UPRR
No. 7 "Omaha"
&
No. 8 "Idaho"
Operating Manual

Developed by Smokebox for Dovetail Game's Train Simulator 2019™
Contents

Introduction... 4
Locomotive Technical Specifications.. 4
Positions of the Controls and Gauges in the Cab ... 5
Key Assignments... 9
Animations... 12
Lights.. 13
Sanding.. 14
Particle Effects... 14
Other Special Effects ... 15
Expert mode, Simple mode and Automatic Fireman ... 15
Genuine Wheelslip ... 15
Real Steam Chest with Individual Valve Events.. 16
Throttle and Reverser Behaviour .. 17
Brakes.. 18
Firebox... 21
Water.. 22
Speedometer.. 24
Headlight... 25
Impaired Operation .. 25
Adjustable Controls Difficulty ... 26
Cab views and Head-out Views ... 28
Antlers... 29
Scenarios... 30
Asset Selection in the Scenario Editor .. 30

© Smokebox 2019, all rights reserved

Issue 1
Introduction

No. 7 "Omaha" and No. 8 "Idaho" were built by the Schenectady Locomotive Works of New York, U.S.A., in March-April 1866 for the Union Pacific Railroad. The design is very similar to that of the well-known CPRR No. 60 "Jupiter", which was built by the same manufacturer. For that reason, the model has been built, as far as possible, using the engineering drawings that were produced by the Californian firm O'Connor Engineering Laboratories of Costa Mesa, California, in the 1970s to build a working, life-size replica of "Jupiter" for the Golden Spike National Historic Site, located in West Promontory, Utah, U.S.A., as part of the government-funded Promontory Locomotive Project. Those drawings were developed largely from micrometer measurements taken from 1869 photographs of the locomotive along with a locomotive design engineer’s handbook from 1870. In addition, photographs of the original "Idaho" as well as similar Schenectady locomotive UPRR No. 23 were used as references for the making of this model.

Locomotive Technical Specifications

- **Build date:** March 1866 ("Omaha"), April 1866 ("Idaho")
- **Builder:** Schenectady Locomotive Works of New York, U.S.A.
- **Type:** "American"
- **Wheel configuration:** 4-4-0 ("Eight-wheeler")
- **Operating company:** Union Pacific Railroad (UPRR)
- **UPRR number and name:** 7 "Omaha"
- **Sister locomotive:** 8 "Idaho"
- **Cylinders:** 2 each of 16" cylinder bore and 24" piston stroke
- **Driving wheel diameter:** 56.937" without tires, 61.937" with 2.5" thick tires
- **Boiler pressure:** 120 psi
- **Grate area:** 14.5 sq.ft. - estimated
- **Weight on drivers:** 18 U.S. tons (16.1 UK tons) - estimated
- **Heating surface:** 800 sq.ft. - estimated
- **Weight of tender:** 20 tons (17.9 UK tons) - estimated
- **Tender fuel:** 2,000 gals of water, 2 cords of wood
- **Starting tractive effort:** 9,523 lbf - estimated
- **Boiler horsepower:** 290 bhp - estimated
- **Steaming rate:** 10,000 lbs/hr - estimated
- **Maximum cut-off:** +/- 75% (12 forward notches; neutral notch; 6 reverse notches)
Positions of the Controls and Gauges in the Cab

The diagrams below show the positions of the cab controls (operated by dragging or clicking with the mouse) and gauges (or gages, if you prefer).

1. Long Whistle
2. Quilled Toot
3. Short Toot
4. Three Short Toots
5. Bell
6. Safety Valve Spring Balance
7. Steam Gauge
8. Blower Steam Throttle
9. Feedwater Heater
10. Feedwater Heater
11. Throttle
12. Sander
13. Cylinder cocks
14. Feedwater Pump Try Cock
15. Reverser
16. Window
17. Door
18. Water Gauge Try Cock
19. Water Gauge Try Cock
20. Water Gauge Try Cock
21. Window
22. Window
23. Feedwater Pump Try Cock
24. Blower
25. Firebox Door
26. Rear Damper
27. Front Damper
28. Blowdown
29. "Stoking Log" (Desired Fire Mass)

30. Window
31. Door
32. Handbrake
33. Tender Tank Manhole
34. Water Valve
35. Water Valve

Key Assignments

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer's Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle</td>
<td>A</td>
<td>Increase</td>
<td>The throttle controls the rate at which the steam chest (not the cylinders directly) is filled with steam.</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Decrease</td>
<td></td>
</tr>
<tr>
<td>Reverser</td>
<td>W</td>
<td>Forwards</td>
<td>The reverser controls the length of the valve cut-off, i.e. for how long steam is admitted to the cylinders on each piston stroke, as well as the direction of travel (although it is possible, in the right circumstances, to be travelling forwards with the reverser in reverse, and vice-versa).</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Reverse</td>
<td>(“Hook up”)</td>
</tr>
<tr>
<td>Sander</td>
<td>X</td>
<td>Open</td>
<td>Use the sander to avoid wheelslip in wet or icy conditions.</td>
</tr>
<tr>
<td></td>
<td>Shift X</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Key</td>
<td>Action</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Whistle</td>
<td>Spacebar</td>
<td>Blow</td>
<td>Tap quickly to produce a short toot. Tap for slightly longer to produce a longer toot. Hold for approximately one second to initiate a long whistle.</td>
</tr>
<tr>
<td></td>
<td>Spacebar</td>
<td>Quill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shift</td>
<td>Three Short</td>
<td>Signals to everyone around that the locomotive is about to back up.</td>
</tr>
<tr>
<td></td>
<td>Spacebar</td>
<td>Toots</td>
<td></td>
</tr>
<tr>
<td>Bell</td>
<td>B</td>
<td>Toggle On/Off</td>
<td>The standard way to operate the bell from the keyboard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Cocks</td>
<td>C</td>
<td>Toggle Open/Close</td>
<td>Steam will be expelled from the cylinder cocks only when they are open and the regulator is not fully closed. There will be a catastrophic failure if the cylinder cocks are not used after the loco has been stationary for some time, as a result of steam condensing in the cylinders.</td>
</tr>
<tr>
<td>Blowdown</td>
<td>Shift F8</td>
<td>Open</td>
<td>The blowdown uses steam to clear the sludge that can build up in the boiler. In the model, it is merely a visual effect, i.e. a cosmetic feature.</td>
</tr>
</tbody>
</table>

Fireman’s Controls

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower</td>
<td>N</td>
<td>Open</td>
<td>Increasing the blower helps to create more draft, especially when there is not much exhaust pressure. That helps to generate steam more quickly and to prevent the smoke and flames in the firebox from blowing back into the cab.</td>
</tr>
<tr>
<td></td>
<td>Shift N</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Blower Steam Throttle</td>
<td>E</td>
<td>Toggle Open/Close</td>
<td>The blower is fed with steam from the boiler. That steam is shut off by closing the blower steam throttle. At the start of every scenario, the blower steam throttle is already closed.</td>
</tr>
<tr>
<td>Firebox Door</td>
<td>F</td>
<td>Open</td>
<td>While the door is fully open, the engine script will throw wood on the fire in an attempt to keep the “fire mass” at the level indicated by the position of the moveable log in the firebox.</td>
</tr>
<tr>
<td></td>
<td>Shift F</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Desired Fire Level</td>
<td>R</td>
<td>Increase</td>
<td>Sets the desired level of the fire mass, as indicated by the position of the log in the firebox.</td>
</tr>
<tr>
<td></td>
<td>Shift R</td>
<td>Decrease</td>
<td></td>
</tr>
<tr>
<td>Tender Water Valve (right-hand)</td>
<td>L</td>
<td>Open</td>
<td>Open the tender right-hand water valve to allow water to reach the right-hand feedwater pump, so that it is able to replenish the boiler.</td>
</tr>
<tr>
<td></td>
<td>Shift L</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Tender Water Valve (left-hand)</td>
<td>K</td>
<td>Open</td>
<td>Open the tender left-hand water valve to allow water to reach the left-hand feedwater pump, so that it is able to replenish the boiler.</td>
</tr>
<tr>
<td></td>
<td>Shift K</td>
<td>Close</td>
<td></td>
</tr>
</tbody>
</table>
Auto-stoking

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-stoking</td>
<td>J</td>
<td>Toggle On/Off</td>
<td>Auto-stoking means that the engine script will automatically open and close the firebox door as and when it needs to put wood into the firebox. Toggling it off will stop the door from opening again after it has closed. This is useful when approaching a tunnel, avoiding a “blowback” error caused by leaving the door open just as the locomotive enters a tunnel at speed. It is enabled by default.</td>
</tr>
</tbody>
</table>

Other controls

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulling Bar</td>
<td>Ctrl P</td>
<td>Toggle Up/Down</td>
<td>The pulling bar should be raised before coupling with the drawhead of the car in front of the locomotive.</td>
</tr>
</tbody>
</table>

Doors and windows

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cab Window (inner left)</td>
<td>comma</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Shift comma</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Cab Window (inner right)</td>
<td>period</td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Shift period</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Cab Door (left)</td>
<td>Home</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Shift Home</td>
<td></td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td>Cab Door (right)</td>
<td>End</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Shift End</td>
<td></td>
<td>Close</td>
<td></td>
</tr>
</tbody>
</table>

Lights

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlight</td>
<td>H</td>
<td>Illuminate</td>
<td>To illuminate or extinguish the light, the locomotive must be at a standstill.</td>
</tr>
<tr>
<td>Shift H</td>
<td></td>
<td>Extinguish</td>
<td></td>
</tr>
<tr>
<td>Shadow-Casting</td>
<td>Ctrl Shift S</td>
<td>Toggle On/Off</td>
<td>By default, shadows are off.</td>
</tr>
</tbody>
</table>

Tender

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tender Manhole Lid</td>
<td>y</td>
<td>Toggle Open/C</td>
<td></td>
</tr>
<tr>
<td>Handbrake</td>
<td>/</td>
<td>Toggle On/Off</td>
<td></td>
</tr>
</tbody>
</table>
Miscellaneous simulation control commands

<table>
<thead>
<tr>
<th>Item</th>
<th>Key</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew</td>
<td>V</td>
<td>Toggle Visible/</td>
<td>Enables a pop-up message giving summary information on various aspects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invisible</td>
<td>of operating the locomotive.</td>
</tr>
<tr>
<td>Performance Report</td>
<td>Ctrl Shift R</td>
<td>Toggle On/Off</td>
<td></td>
</tr>
<tr>
<td>Track Condition (Friction)</td>
<td>Shift 3 Increase</td>
<td></td>
<td>The track condition is selectable. It starts off as "dry" (less prone</td>
</tr>
<tr>
<td></td>
<td>Ctrl 3 Decrease</td>
<td></td>
<td>to wheelslip) but the slipperiness can be increased progressively through</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"rain", "snow" and "wet leaves" (very easy to slip). Ctrl 3 progressively</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decreases the slipperiness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*The track condition is initialized automatically in accordance with the *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>weather and season at the start of each scenario.</td>
</tr>
<tr>
<td>Base Smoke Density</td>
<td>Shift 4 Decrease</td>
<td></td>
<td>Allows the base density of the stack smoke to be selected between "Dense*</td>
</tr>
<tr>
<td></td>
<td>Ctrl 4 Increase</td>
<td></td>
<td>"Normal", "Light" and "Sparse". The default is "Normal".</td>
</tr>
<tr>
<td>Easy Controls</td>
<td>Ctrl D Toggle On/Off</td>
<td></td>
<td>When toggled on, the throttle response lag is eliminated and the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reverser can be moved at any time without it lunging forwards/backwards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>when there is pressure on the valves. It is toggled off by default.</td>
</tr>
</tbody>
</table>

Animations

This model has a huge number of animated parts.

- The entire **valve gear and running gear** is animated, with separate animation sequences for various positions of the reverser. This means that when you move the reverser lever (the "Johnson bar"), you can watch everything that is connected to it and see how the cut-off is adjusted - the amount of travel of the valve pistons will change, the lifting links will raise or lower the links to the Stephenson gear, and so on. This happens even when the wheels are in motion, not just when the locomotive is stationary.

- The **brake rigging** of the tender’s rear truck is animated, along with the handbrake wheel and its ratchet.

- The cab **doors** and **windows** can be opened.

- On the tender, the **water tank manhole lid** on the top deck can be opened.
• The **wood fuel** in the tender is animated such that it gradually disappears as it is used up.

• The **bell**, its **clapper** and the **bell rope** are fully animated with a simulation of the bell's momentum and inertia.

• All of the **cab controls** are animated in both the cab view and the external model so that when looking into the cab from outside, the controls move just as they do in the internal cab view.

• The **pulling bar** on the locomotive's pilot (a.k.a "cowcatcher") is animated.

Lights

The headlight beam can be toggled between casting shadows or not.

By default, the shadows are OFF. Switching shadows ON will probably decrease the framerate (the impact will depend on your particular system), but on a reasonably powerful system, the effect of the shadows cast by the headlight at night is (in my opinion) well worth the cost.

In order for the headlight to shine brightly, "Headlight Flares" must be enabled in the advanced graphics settings, as shown below:

![Settings](image)
Sanding

The model has been scripted to simulate a limited amount of sand in the sandbox (sand dome), enough for about two hours of continuous operation.

Particle Effects

The action of the cylinder cock steam emitters is scripted to take account of there being two cylinder cocks per cylinder, one for the forward stroke and another for the backward stroke. The script controls the steam emission, alternating between the forward and rear cylinder cocks, synchronized precisely with the piston strokes.

The colour of the stack smoke changes depending on the exhaust pressure and the amount of steam and smoke entering the stack. When the steam pressure in the cylinders rises, the exhaust will turn whiter because the ratio of steam to smoke increases.

Smoke and flames can be seen inside the firebox. When the locomotive is traveling at speed, the flames will extend out into the cab when the firebox door is open, unless there is enough draft from the exhaust and/or blower to draw the fire away from the cab.

The blowdown valve gives off a plume of steam when blowing off.

There is a spring-balance safety valve on the steam dome. When the boiler pressure rises past 118.5psi, the safety valve will start to emit some faint wisps of steam. These will increase in density as the pressure continues to rise, reaching full density at 120psi.

The whistle, when blown, gives off steam.

Sparks fly from the wheel tyres when enough wheelslip (wheelspin) occurs.

The sanders show particles of sand coming out of the nozzles near the driver tyres.

Steam will be seen bleeding from the packing glands at the rear of the cylinders when there is steam in the rear half of the cylinder - the amount of bleeding will increase if the cylinders are damaged (through excessive wheelslip or reverse pressure braking).

The water pump try cocks squirt water when opened, on each stroke of the pumps, as long as the corresponding water valves in the tender are open.

The boiler water gauge try cocks in the cab, when opened, emit steam when the water is at or below the level of the try cock (otherwise the sound of trickling water will be heard).
In winter scenarios, smoke is seen coming from the **stovepipes** of the passenger cars.

Other Special Effects

In cab view, **raindrops** appear on the window panes when it's raining.

When used as an AI, the locomotive will **automatically blow the correct whistle codes** for releasing and setting the brakes when, respectively, starting and stopping a train. It will also blow three short "toots" in quick succession when it starts to back up.

The **oil lamps** inside passenger cars in a consist **illuminate automatically** whenever the locomotive's headlight is illuminated.

Expert mode, Simple mode and Automatic Fireman

The locomotive combines all of its advanced features with the ability to use the F4 HUD if so desired. There is no separation into Advanced and HUD-enabled versions. Instead, the one version of the locomotive does everything.

Furthermore, the locomotive can be operated in either Simple Controls or Expert Controls mode, with or without the normal TS automatic fireman enabled.

Genuine Wheelslip

The model features extremely realistic wheelslip physics using a method pioneered by Smokebox.

The motion of the four driving wheels and all of the connected rods, cranks, links and valve gear are governed by LUA scripting (the forwards and backwards motion of the locomotive, as well as the rotation of the pilot truck and tender truck wheels, is still controlled through the core code). This allows the model to exhibit true wheelslip behavior in different track conditions that can be selected (via key presses) by the player. When the locomotive loses traction, the driving wheels slip visibly.

The LUA scripting contains some complex calculations for wheel inertia, momentum and adhesion, taking account of the locomotive's instantaneous tractive effort, the weight on the driving wheels.
(allowing for the current mass of water in the boiler), sanding and the coefficient of friction between the driver tires and the rails.

The friction can be changed "on the fly" through a keystroke combination, even to the extremely slippery condition of "leaves on the track" (leaves produce a resinous black goo that hardens into a substance so slippery that not even sanding will help).

It's possible to induce wheelslip even when running "light engine" (in fact, the weight of the consist pulled by the locomotive is not a direct factor in determining wheelslip - it only affects how much power is needed to overcome the inertia of the consist and get it rolling). Furthermore, the reverser can be used (carefully!) to slow down the engine and then when traction is lost, the wheels will spin in the opposite sense to the direction of travel of the locomotive.

Once wheelslip occurs, if it's not corrected promptly, the wheels will continue to spin faster and faster until "something bad happens" to your locomotive.

Example: If you close the throttle and put the reverser into the opposite direction, then open the throttle again, the driving wheels will slow down (losing their rotational momentum as the pistons act like brakes) and eventually rotate in the opposite direction (back-pedalling).

Real Steam Chest with Individual Valve Events

The throttle is not connected directly to the cylinders but instead there is a complex, scripted simulation of the way that the throttle actually fills up the steam chest (everything between the regulator ports, through which high-pressure steam enters from the boiler, and the valve admission ports). It can be thought of as a reservoir of steam that is emptied when the valve gear opens the admission ports to let steam into the cylinders to move the pistons and turn the wheels. The simulation fills this reservoir when the throttle is opened and empties it each time the admission ports are opened (and by an amount that depends on the cut-off and the speed of the pistons). It accounts for losses in pressure caused by condensation in the steam chest, the effect of "wire-drawing" when the valve pistons are moving fast, and the loss of pressure through the cylinder drain cocks when they are open.

There is neither a steam chest pressure gauge nor a back-pressure gauge (for the exhaust pressure) in the cab. To control the locomotive properly at very low speed, you need to listen carefully to the sounds it makes.
Throttle and Reverser Behaviour

Notched Quadrants

The throttle and reverser lever quadrants are both notched (the levers have spring-loaded latches that drop into notches cut into their quadrants).

The throttle has 16 evenly-spaced notches. Therefore, the throttle can be changed in increments of 6.25%.

The reverser has 19 unevenly-spaced notches. There are 12 forward notches, a centre (neutral) notch and 6 reverse notches. The reverser determines the amount of valve cut-off and has a range of +75% to -75%. Note that the F4 HUD displays the reverser value in that range but the F5 HUD displays it in the range +100% to -100%, i.e. the F5 value is the cut-off expressed as a percentage of the maximum available cut-off.

Therefore, the available notches for the reverser are as follows:

<table>
<thead>
<tr>
<th>Reverser Notch</th>
<th>Valve Cut-off</th>
<th>Reverser value shown by F5 HUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>69%</td>
<td>92%</td>
</tr>
<tr>
<td>3</td>
<td>63%</td>
<td>84%</td>
</tr>
<tr>
<td>4</td>
<td>57%</td>
<td>76%</td>
</tr>
<tr>
<td>5</td>
<td>51%</td>
<td>68%</td>
</tr>
<tr>
<td>6</td>
<td>45%</td>
<td>60%</td>
</tr>
<tr>
<td>7</td>
<td>40%</td>
<td>53%</td>
</tr>
<tr>
<td>8</td>
<td>34%</td>
<td>45%</td>
</tr>
<tr>
<td>9</td>
<td>28%</td>
<td>37%</td>
</tr>
<tr>
<td>10</td>
<td>22%</td>
<td>29%</td>
</tr>
<tr>
<td>11</td>
<td>16%</td>
<td>21%</td>
</tr>
<tr>
<td>12</td>
<td>10%</td>
<td>13%</td>
</tr>
<tr>
<td>13</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>14</td>
<td>-17%</td>
<td>-23%</td>
</tr>
<tr>
<td>15</td>
<td>-28%</td>
<td>-37%</td>
</tr>
<tr>
<td>16</td>
<td>-40%</td>
<td>-53%</td>
</tr>
<tr>
<td>17</td>
<td>-52%</td>
<td>-69%</td>
</tr>
<tr>
<td>18</td>
<td>-64%</td>
<td>-85%</td>
</tr>
<tr>
<td>19</td>
<td>-75%</td>
<td>-100%</td>
</tr>
</tbody>
</table>
Lever Latches

There is no separate key for releasing the latches on the levers. That's because the levers are moved by squeezing the latch handle to lift the latch out of the notch it's currently sitting in, then moving the lever while still squeezing the latch handle, and releasing the latch handle when the latch is over the notch it needs to be in (if it's not exactly over the notch, the lever will move a bit until it drops into the notch). In real life, all of that - squeeze handle, pull/push the lever, release handle - is done in one smooth movement. It would be unnatural to have to press one key to simulate squeezing and releasing the latch handle and a different key to move the lever. The animation is done in such a way that the latch handle can be seen squeezing shut and lifting the latch out of the notch just as the lever starts to move, then springing open and dropping the latch into the notch after the lever stops moving, simulating how it looks and feels in real life.

Reverser Forces

The reverser lever is connected through mechanical linkages to the valve mechanisms. When the admission valves close, to cut off live steam to the cylinders, they have to contend with the pressure of the steam that tries to force the valves open. If the throttle is open enough for the live steam pressure to be greater than about 40psi, when the reverser lever is unlatched, there can be enough force working against it to wrench it from the engineer's hands, causing the lever to lunge forwards (if the locomotive is traveling forwards) or backwards (if the locomotive is backing up). It is possible to adjust the cut-off with the throttle cracked open, as long as the steam chest pressure doesn't rise above about 40psi, but the usual way is to close the throttle and wait until the sound of the exhaust chuffs subsides before trying to move the reverser lever.

Throttle Lag

The throttle valve is located in the steam dome near the cab, some distance from the front-end. Therefore, you must take account of the short pause between adjusting the throttle lever in the cab and seeing a corresponding change in steam pressure at the pistons. Adjust the throttle lever one or two notches at a time and wait to see how the locomotive reacts (also listen carefully to the exhaust).

Note: If you want to eliminate the throttle response lag and to be able to move the reverser without any hindrance, use Ctrl D to toggle the controls to "Easy" (they default to "Difficult").

Brakes

One of the interesting aspects of this locomotive is that it was built before locomotives were fitted with brakes. The tender has a handbrake that acts on the tender’s rear truck but it is intended to be used as a parking brake, not for slowing down the train.
Instead, the engineer must rely on the following methods of braking:

- Signaling to the brakemen to set or release the brakes on each of the cars in the consist.
- Live steam pressure acting in reverse against the pistons.

Whistling to the Brakemen

The whistle is used to tell the brakemen what to do. This is simulated in the model:

- To *release* the brakes, blow **two long notes** on the whistle, close together.
- To *set* the brakes, blow **one short "toot"**.

Pressing the spacebar for more or less time will produce different whistle sounds:

- Press quickly for a very short toot.
- Press for slightly longer to get another short toot with a bit of "quilling".
- Press for longer to start a long whistle (release the spacebar when the whistle starts to blow).

Alternatively, you can mouse-click on the red handle of the whistle lever:

- The tip of the handle initiates the long whistle.
- The middle of the handle plays a quilled short toot.
- The base of the handle plays a very short toot.
- Even farther along the handle plays three short toots.

The locomotive script "listens" to the kind of whistle note being played, as well as the time intervals between them, and is able to recognize whistle codes. This means that you can also play any other whistle code - for example, three short toots to indicate that the locomotive is about to back up - without affecting the train brakes.

When taking a train downhill, the brakes should be set (by using the whistle to signal to the brakemen) before reaching the start of the incline. Then the throttle should be used to apply power to pull the train down the incline and to control the speed. Cutting the throttle should be enough to allow the brakes on the train cars to slow the train down even while going downhill. However, if the train still doesn't slow down quickly enough (or at all!), which can happen on very steep inclines, it's possible to supplement the braking by using reverse pressure in the cylinders (see below).

Braking with Reverse Pressure in the Cylinders
In more modern steam locomotives that have train and engine brakes, this method is definitely frowned upon. However, in the days before brakes, trains typically traveled at slow speeds - 10mph for freight trains, 20mph for passenger trains, even if they were physically capable of higher speeds.

One reason for the slow speeds was to control costs by reducing wear and tear (maintenance and replacement costs) and fuel consumption.

Another reason was to allow trains to be stopped within the distance it took to stop a train by the means the crew had at their disposal. This was particularly important given the absence of signaling on single-track roads. The train had to be going slow enough to be able to bring the train to a stop in the time between sighting an obstruction ahead (another train, a fallen tree, a damsel in distress tied to the tracks ...) and reaching the obstruction.

What this means is that while it’s possible for the locomotive with a six- or seven-car consist to reach speeds well in excess of 30mph, it’s sometimes inadvisable, simply because it increases the risk of not braking in time.

That said, here's what you need to know in order to be able to brake properly using the reverser:

Basically, the technique consists of admitting steam into the cylinders at the end towards which the piston is traveling. That is achieved by putting the reverser into the opposite direction to the way the locomotive is traveling and then cracking open the throttle a little bit (one notch) at a time.

It's important to make sure that the steam chest is more or less empty before putting the reverser into the opposite direction. The sound of the exhaust chuffs gives an audible clue.

After reversing the reverser, open the throttle just a little and wait a few seconds, listening to the exhaust chuffs. If the volume of the sound rises, it means steam is entering the cylinders, so close the throttle to cut off the steam. Don't let it continue to rise quickly. On the other hand, if the sound doesn't get louder, open the throttle a bit more and repeat.

It takes a lot of practice to "stop on a dime" (switching maneuvers are especially challenging!) and it’s easy to find that there is still enough pressure in the steam chest to cause the locomotive to start going in the opposite direction after slowing to a stop. One technique to prevent that from happening is to open the cylinder drain cocks immediately after cutting the throttle and apply the handbrake as soon as the locomotive does roll to a stop.

If too much steam pressure is put against the oncoming piston heads, there is a risk of damage to the pistons (as well as the rods and cylinders). If damage occurs, a warning message will pop up, indicating the damage as a percentage of the maximum amount that the mechanisms can tolerate, in increments of 10%. That allows you to see when you are overdoing the reverse braking, before it gets too serious.
Firebox

Managing the Fire with the Auto Fireman Disabled

Inside the firebox, there is a log of wood that can be moved up and down either by dragging it with the mouse or using the standard stoking commands ("R" to increase, "Shift R" to decrease).

The position of the log determines how much fire mass the engine script will attempt to maintain:

- When the log is at its highest position, the script will try to keep the fire mass at the level that gives the hottest fire temperature (for maximum rate of steam generation) - 480lbs, which is 60% of the maximum;
- When the log is at its lowest position, the script will let the fire die down to a minimum, without it actually going out, to cool the firebox (for a lower rate of steam generation);
- When the log is at any intermediate position, the script adjusts the target fire mass level accordingly.

When the firebox door is open, the script will add fuel to the fire continuously for as long as necessary to get the fire mass to the desired level.

If you close the firebox door, the script will open it automatically at regular intervals to add more fuel to the fire and close it after the fuel has been added. Therefore, after closing the door, you will see it open and close by itself as the script carries on managing the fire for you.

NOTE: The script does this only when the F4 HUD is hidden. If the F4 HUD is on-screen, you have to open and close the firebox door using the HUD button. As soon as you hide the F4 HUD, the script will return to opening and closing the firebox door automatically.

Fire Color

The hotter the fire, the whiter and brighter it gets, so you can easily judge how hot it is just by looking at it when the firebox door is open.

Dampers

The dampers determine how much air reaches the fire. The fire will get hotter when it is fed with more air. There are two dampers, one at the front and one at the back of the firebox (below the level of the grate).

The left-hand damper handle opens and closes the front damper. The right-hand damper handle opens and closes the rear damper.
To allow more air to reach the fire while the locomotive is traveling forwards, open the rear damper and close the front damper. Conversely, when backing up, close the rear damper and open the front damper. At the start of a scenario, both dampers are closed.

Blowback

Blowback can occur with the firebox door open and a strong fire in the firebox, if the draft from the smokebox isn't strong enough to draw the heat of the fire through the boiler flues and prevent the flames from blowing back into the cab. It is even more likely to occur upon entering a tunnel because of the sudden increase in pressure at the opening of the smoke stack suppressing the draft.

If the blowback does occur at a tunnel entrance, the game will end the scenario with a "fatal blowback" message. At other times, the flames will visibly blow back into the cab!

To prevent blowback, the draft must be sufficient to keep the flames at bay. That can be achieved by increasing the steam chest pressure (opening the throttle more) and/or opening the blower more (the blower steam throttle must also be fully open).

In particular, before closing the throttle, make sure that the blower is on, as that will compensate for the reduction in draft resulting from the lower steam chest pressure.

Managing the Fire with the Auto Fireman Enabled

When the game's auto fireman is enabled, it takes complete control of the management of the fire. You are not able to open the firebox doors yourself, nor can you do anything with the water foot valves in the tender, and although you are still able to move the blower valves in the cab, they have no effect - the auto fireman controls the internal state of the blowers.

Although the auto fireman doesn't maintain the fire mass at the ideal level, it does manage to keep the fire relatively hot.

One indication that the auto fireman is enabled is that when the firebox doors open and close, they do so very quickly!

Water

Crosshead Pumps

The locomotive doesn't have water injectors. Instead, there are two mechanical pumps driven directly off the piston crossheads. Water is pumped into the boiler on each stroke of the pistons as long as the corresponding "foot" water valve in the tender is open. The valves can be opened by
mouse-clicking on them - the handles will spiral upwards along a screw thread, opening the valves in the foot of the tender to allow water to reach the crosshead pumps.

To check that the pumps are delivering water to the boiler, mouse-click on the handles located near the bottom of the doors in the cab and watch for spurts of water from the open try cocks.

Obviously, when the pistons aren’t moving, no water is pumped into the boiler. This means that the boiler cannot be replenished when the locomotive is at a standstill.

In real life, when the locomotive was stopped but the boiler needed to be topped up, there were two ways of doing it:

- Run the locomotive up and down a short length of track to keep the pistons moving, or
- Apply grease to the rails ahead of the driving wheels and then deliberately cause wheelslip so that the pistons would operate the pumps without the locomotive actually going anywhere!

Both of these methods can be used with this model. The first is straightforward. The second requires that you change the track friction “on-the-fly” to the most slippery - that will allow you to induce wheelslip. You just need to be careful with the throttle so that the wheelslip doesn’t get out of hand and damage the running gear.

Water Gauge Try Cocks

There are three water gauge try cocks in the cab. Mouse-click on a try cock to toggle it opened/closed.

When a try cock is open, what happens next depends on the level of the water in the boiler versus the height of the try cock:

- Boiler water level is significantly higher than the try cock: the sound of trickling water will be heard;
- Boiler water level is close to the level of the try cock: the sound of trickling water will be heard and a small amount of steam will emanate from the try cock;
- Boiler water level is significantly below the level of the try cock: no sound of trickling water and a lot of steam will gush from the try cock.

The height of the try cocks, crown sheet and the top and bottom of the boiler, in inches and in terms of the water level shown by the F5 HUD, are as follows:
Check the water level in the boiler frequently by opening each try cock for a moment (it's more immersive than relying only on the F5 HUD).

- If no steam comes out when the topmost try cock is open, there is a risk of overfilling the boiler and priming the cylinders, so turn off the water to one or both of the crosshead pumps;

- If steam gushes out of the lowest try cock, there is a risk of uncovering the crown sheet, causing a boiler explosion (which translates into an immediate "Game Over Error"), so turn on one or both of the water foot valves to replenish the boiler.

Auto Fireman Enabled

When the game's auto fireman is enabled, it takes control of the water foot valves - you cannot move them yourself - and does a good job of keeping the boiler water level well above the top of the crown sheet.

Speedometer

In the 1860s, when "Omaha" and "Idaho" were built, locomotives didn't have speedometers.

Instead, using the F3, F4 or F5 HUD while you practice, you'll soon learn how to recognize your speed from the sound of the chuffs.

2 The reason for the apparent disparity in the increments between the F5 HUD levels versus the height in inches is because of the fact that the boiler is a cylinder.
Headlight

To light or extinguish the headlight, the locomotive must be at a standstill.

Impaired Operation

The model simulates several ways in which things can go wrong:

- Damage to the cylinders when they aren't properly drained of condensation - use the cylinder drain cocks when moving off after the locomotive has been stationary for some time, especially in winter scenarios;
- Damage resulting from the mechanical stresses of over-speeding (including wheelslip at high revolutions);
- Damage resulting from the mechanical stresses of using the reverser in reverse to slow down the locomotive;
- Problems caused by overfilling the boiler.

All of these are in addition to the "standard" failures such as running out of water, dousing the fire, derailments ...

Cylinder Damage

When the locomotive is left standing for some time with the cylinder cocks closed, condensation builds up in the cylinders. Water, unlike steam, cannot be compressed, so if the water is left in the cylinders when the pistons start to move, it can reach a point where the pistons are pushing up against the water. If they keep on pushing, something has to give, and it's usually the cylinder caps, or sometimes it can be worse and result in damage to the pistons and rods. To prevent that from happening, the cylinder cocks should be opened before the locomotive starts to move, so that on each piston stroke, water will be expelled from the drain cocks beneath the cylinders. After a few revolutions, the cylinder cocks can be closed - doing so means that steam pressure isn't lost through the drain cocks and it also helps to preserve the lubrication in the cylinders.

Overspeeding

When the rotational speed of the driving wheels exceeds the equivalent of 50 MPH (note that this can happen during extreme wheelslip, even if the actual speed of the locomotive is very low),
damage starts to accrue in the motion and valve gear. Eventually, there will be a catastrophic failure (which will end the scenario).

Overfilling the boiler

Care has to be taken to avoid overfilling the boiler - use the water gauge try cocks frequently.

When the topmost try cock is opened, if the sound of trickling water can be heard and there is no more than a hint of steam, it’s a sign that the boiler is overfilling.

When the boiler is too full, two things happen. First, when the level is at around 1.15 (the value shown on the F5 HUD), the throttle gets stuck. The throttle will not move again until the water level drops below 1.00. If the water level continues to rise and reaches 1.2, water from the boiler enters the cylinders - game over!

Adjustable Controls Difficulty

In the *Expert* train controls gameplay setting, there are two levels of control difficulty - *Difficult* and *Easy*. Use Ctrl D to toggle between the two levels. The default is *Difficult*.

Difficult

Difficult level enables all of the advanced, realistic control simulation in the engine script and is intended for experienced players looking for a challenge.

Easy

Easy level disables some of the advanced features. It is intended for casual players who want something a little bit more difficult than the *Simple Controls* gameplay setting but without the challenge of the very realistically scripted controls. The control modifications in *Easy* level are as follows:

- Throttle response is immediate (no lag)
- The amount of steam going to the admission valves is directly proportional to the position of the throttle lever (no simulation of the steam chest filling and emptying, nor of condensation in the steam chest, and the wire-drawing effect at the valve apertures is ignored)
- Overfilling the boiler will not cause the throttle lever to jam
- The reverser can be moved without any hindrance (even when there is a lot of pressure in the steam chest)
• The pistons will not accrue further damage (any damage that was caused to the pistons while in *Difficult* level will remain)

• Condensation in the cylinders is ignored (there is no need to drain the cylinders before moving the locomotive)

• Fake engine (a.k.a. independent) brakes are included that can be operated with the brake lever in the F4 HUD (remember to switch from train brakes to engine brakes first). This overcomes one of the most difficult aspects of operating this 4-4-0 and allows the locomotive to be stopped without relying on reverse pressure braking. The amount of brake force is directly proportional to the position of the lever. *In Expert train controls gameplay setting, you must still use the "/" key to operate the tender's handbrake and use the whistle to signal to the brakemen to apply and release the handbrakes on the rest of the cars in the consist.*

Simple Controls

The very easiest way to operate this locomotive is to switch the train controls gameplay setting to *Simple Controls*.

Control difficulty is always *Easy*.

Wheelslip is still simulated, so care must be taken to avoid using too much throttle (moving the F4 HUD's combined throttle/brake lever upwards too quickly).

Whistle codes are ignored. Instead, the handbrakes on the tender and the cars in the consist will be applied or released automatically depending on the position of the combined throttle/brake lever:

• lever in range 0% to 49.9%: brakes apply

• lever in range 50% to 100%: brakes release
Cab Views ("1" key)

The cab is entered by pressing the "1" key. There are five cab camera positions. Use the left and right arrow keys to move from one position to another:

The view that is selected on entering the cab corresponds to leaning out of the right hand window.

Notice that the "1" key cab views already include head-out views from which you can see the track ahead as well as operating the controls with the mouse (if you turn your virtual head a little bit towards the interior of the cab).
Head-out Views ("Shift-2" key combination)

Since the cab head-out views are already covered by the "1" key views, the two camera views that can be selected using the Shift+2 key combination followed by the left and right have been repositioned to give interesting views along the locomotive:

The views also allow you, using the mouse, to turn through 180 degrees to look backwards towards the cab.

Antlers

The antlers can be removed from the top of the headlight by using the Scenario Editor to change the "A" in the locomotive’s auto-numbering field to anything else ("X" for example).
Scenarios

Career Scenarios

The package is supplied with three career scenarios for the Promontory Summit route (available as a separate purchase).

<table>
<thead>
<tr>
<th>Title</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Last Leg</td>
<td>0:52</td>
<td>On this foggy November morning, "Idaho" is bringing a westbound passenger train into Blue Creek. It’s up to "Omaha" to take the train on the last leg of its journey up to Promontory Summit.</td>
</tr>
<tr>
<td>Last Train to Dead Man’s Gulch</td>
<td>1:25</td>
<td>Take the last train of the day down the mountainside to Blue Creek, known by some as Dead Man’s Gulch. From there, pick up the cars left on the main by "Idaho" and continue onwards to Corinne with the combined passenger train.</td>
</tr>
<tr>
<td>Winter Morning Run to Promontory</td>
<td>1:40</td>
<td>"Idaho" has to finish preparing her train and head to Promontory Summit after "Omaha" arrives with an eastbound train.</td>
</tr>
</tbody>
</table>

Quick Drive

The locomotives are Quick Drive-compatible. A variety of pre-defined consists are available for selection.

Asset Selection in the Scenario Editor

The locomotive and rolling stock can be selected by ticking the following in the object filter dialog check boxes:

- Developer: "Smokebox"
- Product: "Omaha"

The names of all items in the product package begin with "[Omaha]".
Rolling Stock

The package is provided with the following additional items of era-appropriate UPRR rolling stock:

Emigrant Passenger Coach with Clerestory Roof - "[Omaha] UPRR Clerestory Coach"
Combined Caboose and Coach - "[Omaha] UPRR Caboose Coach"

Baggage Car - "[Omaha] UPRR Baggage Car"
Toolset Used to Build the Model

- **3DCrafter Pro version 9.3** to create the model geometry and animations;
- **Photoshop** to produce the source textures;
- The **Asset Editor** provided with Train Simulator;
- **Power Sound Editor Free** and **Creative Wave Studio 7** to create the sounds*;
- **HxD** (freeware hex editor) to edit the GEOPCDX files, changing the material name of the window textures to enable rain effects. The geometry file is too large to be compiled by the serz.exe application.

* A few sounds, such as switch and button clicks, were made using samples from http://www.freesound.org, distributed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/legalcode).
Special Thanks

I'd like to extend a special "thank you" to everyone who has helped me with this project, in particular:

- **Everett Meehling**, for allowing me to use some of his sound recordings of the exhaust chuff, bell and whistle of York no. 17;

- **Ted Merrill** for recording some more samples of York 17's bell;

- **Daniel Gollery** and **Curtis Reid** for giving me very helpful advice regarding liveries and colors;

- **Brian Liesberg** for texturing the face and needle of the steam gauge;

- **Dovetail Games**.

Mike Rennie

Perth and Kinross, Scotland,
April 2019

https://www.facebook.com/Smokebox-132794016882582/