Shading a Bigger, Better Sequel
Techniques in Left 4 Dead 2
BRONWEN GRIMES, VALVE
Left 4 Dead 2

- Onion AV Club's Best Games of 2009 Pick
- Gamasutra's Best Of 2009: Top 10 Games Of The Year Pick
- PC Gamer's Shooter of the Year 2009
- IGN's Best Multiplayer Game 2009
- Gamespot's Best Cooperative Multiplayer Game 2009
- GamerVision's Best Ever Multiplayer 2009
- Gamereactor's Co-Op Game of the Year and Online Game of the Year
- Planet Xbox 360's Best Co-Op Experience of 2009
- Spike TV's Video Game Awards 2009 Best Xbox 360 Game
- Ironhammers' Game of the Year
Same Platform, More Content

❖ Xbox 360 target
❖ More Content:
 - 4 hi-res boss characters that can appear anywhere
 - Maps 30% longer
 - 7800 lines of dialogue, 40% increase from L4D1
 - Melee weapons
 - Animation
 - Effects
❖ How do we improve visuals, add more content, but not blow our budget?
The Zombie Apocalypse

- Shipping in a year: pick high-impact systems
- Survive the zombie apocalypse: interaction with the horde
- Focus on improving that experience:
 - Horde variation
 - Weapon feedback
- Lots of data from first game
 - What was expensive or hard to author
 - What worked and what didn’t
The Horde
Variation in Left 4 Dead 1

Playtesters recalled these variants

- Cop is good, he’s “local flavor” in some game areas
- Others are like extras, should be visible but not memorable

Dedicated textures for body geometry
Variation in Left 4 Dead 1

- Limited sharing of head textures, mostly on males
 - Not all maps look good on all geo variations
Variation in Left 4 Dead 1

- Color tinting by multiplication
- Light/dark details must be visible under all tints
 - Untinted, has medium-value base to allow contrasting detail
- Starts dark, only gets darker
Analysis

❖ What didn’t work

• Texture variation that didn’t change contrast
• Fine detail of any sort
Analysis

❖ What did:

- Geometry variation that changed proportions or moved features around

- Large, different color shapes: Color blocking
Color Blocking

- Concept from traditional painting
- Under-painting of local color without applying shading or detail
- Figuring out the local color: what do you see from a distance?
What We Learned

- Tinting must change color blocking
- Best if it affects contrast between local areas of color
- Geometric variation must also affect color blocking
What We Learned

- Color blocking also works at close range
- Blood patterns helped get mileage out of variants playtesters mistakenly perceived as clones
Prototyping the Variation System

❖ Prototype in external app, no overhead of implementation in-engine until we’re sure
❖ Choose app that allows distribution to end users
 • Maya’s HLSL plugin
❖ Start with biggest effect for least investment: Tinting
 • Gradient mapping?
Gradient Mapping

- Just like in Photoshop!

- Luminance values only
- Map every pixel with same luminance to color specified in gradient ramp
Overdoing the colors doesn’t work
Gradient Mapping

- Fits well with DXT compression scheme
 - Needs single channel only
 - Alpha has most fidelity
 - Alpha compresses independently from RGB
- Can’t overdo the colors, but can’t tint entire character with the same gradient ramp
Avoid Monochrome Results

- RGB can be used for masks
- Mask skin and clothing separately
Masking Blood and Grime

L4D1:
- Players identified different textures as clones
- Used blood to differentiate similar textures

L4D2:
- Players should identify *same* texture as *different*
- Apply blood masking to disguise identical textures
Masking Blood and Dirt

- Use masking to add blood
- Store all variants in existing texture
 - Split texture into quadrants
 - Store 4 masks in dedicated channel
- 2 texture lookups:
 - ¼ size to select a single mask
 - Full-size to get lum from alpha
- Do the same for grime
Detail Texture

❖ Blood is a solid color -- Grime doesn’t have to be
❖ Use a detail texture
 • Can vary depending on environment

Mud | Dirt/Road rash | Algae
Discussion and Additional Feature Requests

- Initial results promising: good overall range of luminosity
- Individuals still relatively monochrome
- Blood splats a bit blurry since masks are ¼ sized
- Unfinished goal for L4D1: retro-reflective effect of tapetum lucidum (eye-glow in headlights) signaling inhuman nature of infected

- Specular masking: important because of lack of normal maps
 - Wait... no normal maps?
 - Texture budget is limited: using normal maps means halving our texture budget, which means half the variation
 - We’ve got to look at the fidelity of the horde as a whole, not its individual members
...6 masks?! In 3 channels?!

- Skin tint
- Cloth tint
- Blood
- Grime
- Retro-reflectivity
- Specularity

Already gave up normal maps for variation

- No way are we adding another texture just for masks!
Exclusive Masking

- Cloth and Skin don’t overlap
- Can use different value ranges to mask each effect
Exclusive Masking

- Cloth and Skin don’t overlap
- Can use different value ranges to mask each effect
Exclusive Masking

- Modify mask in shader using levels-like operation
- Move the blackpoint to ignore all values below 127
- Result is skin-tint mask
Exclusive Masking

- Do the same for cloth-tint mask, but invert first
- Ignore all values above 127
- Result is cloth-tint mask
Exclusive Masking

- Result: can mask two separate gradient mappings using a single channel
- Only works because the masked areas don’t overlap
Storing Information

❖ Use exclusive masking and pair up effects

• Spec...Detail
• Blood...Retro-reflectivity
• Clothing tint...Skin Tint
• And of course luminosity in the alpha
Storing Information

- Use specular mask from detail’s alpha in detail-masked zones

- Can pair blood and retro-reflectivity, if blood gets priority
 - Blood on top of a retro-reflective material damps the retro-reflectivity anyway
Storing Information

- Smoothstep for blood patterns
 - Lose some painted detail, get back hard edges
Storing Information

❖ Last problem: individual infected still look relatively monochrome
 • Modify ranges in luminosity for further color variation
 • Create more complex gradient ramp, limit luminosity in areas to map to only a portion of the ramp
Modifying Ranges
Modifying Ranges
Modifying Ranges
Modifying Ranges
Modifying Ranges

- Need buffer between ranges because of compression
Geometric Variation

- Much of texture is shared, helps render batching
- Texel density in areas players focus on:
 - Torso: Center of gravity, direction of motion, intent to move
 - Head: AI has spotted a target
 - Hands: Attack
Authoring Textures

- All geo vars made first, unwrapped together
- Lots of steps, high probability of user error
 - Obvious candidate for scripting
- Let texture artists see the final result while working
- Shader does a lot of compositing with the masks
 - Photoshop is pretty good at compositing too, hmm?
- Let’s review what the shader does
Authoring Textures

- Create standard configuration with named layer sets
- Script setup and reconstruction
 - Use gradient adjustment layers, pattern layers, and solid layers for masked effects
 - Blood and detail painted at full size, one at a time, and hidden when not needed
 - Luminosity painted at full range, levels adjustment layers push values into correct ranges for gradient mapping
 - Specular mask painted in same file, hidden when not needed
- Result: Photoshop looks remarkably congruent with in-game result
Authoring Textures
Authoring Textures
Authoring Textures
Authoring Textures
Zombie Recipe

- Each infected contains:
 - 2-3 head textures with 4 blood patterns each
 - 4-7 head geometry variations
 - 1 body texture with 4 blood patterns
 - 3-8 body geometry variations
 - Detail from shared texture
 - 8 skin tints and 8 clothing tints from shared 16x256 texture
 - “Uncommon” common infected like construction guy in previous slide have their own dedicated palette
Zombie Recipe

- Simplest infected has over 24,000 variations
- Levels use as many as 6 models, as few as 2
 - Depends on memory, costuming
- Creation time is less: made fewer, more effective textures
Measuring Success

- 50% less memory
- 10x variation
- Lighting is done per vert instead of per pixel
 - Vertex shader instructions increased by ~100
 - Pixel shader comparable with L4D1
- Only “uncommon commons” stand out
The Wound System
Game-Level Goals

- Player experiences a zombie apocalypse horror film with their friends
 - Zombies are endless, oblivious to hurt

- Provide feedback appropriate to type/level of weapon
 - Communicate power of weapon
 - Easily identify hurt or dispatched targets
Wounds in Left 4 Dead 1

- Built-in, expensive for vert mem
- 5 variations only, all hand-authored for each zombie
- Requires texture support, expensive for texture mem
- Always Fatal, doesn’t support “oblivious to hurt”
First Attempts

- Place instanced wound object
- Deform or cut
- Geo level not good enough
 - Deformation boundaries too dissimilar if mesh tessellation is not the same
First Attempts

- Place instanced wound object
- Deform or cut
- Geo level not good enough
- Pixel Level has own problems
 - Cut too uniform, doesn’t look like damage
First Attempts

- Place instanced wound object
- Deform or cut
- Geo level not good enough
- Pixel Level has own problems
- Meat flowers not the way to go
First Attempts

- Place instanced wound object
- Deform or cut
- Geo level not good enough
- Pixel Level has own problems
- Meat flowers not the way to go
- Place geo inside: seams have to look messier
Blowing a Hole

- Ellipsoid defines affected area
Blowing a Hole

- Ellipsoid defines affected area
- Per-vert values for affected area
Blowing a Hole

- Ellipsoid defines affected area
- Per-vert values for selected area
- Determine falloff
Blowing a Hole

- Ellipsoid defines affected area
- Per-vert values for selected area
- Determine falloff
- Overlap planar projection
Blowing a Hole

- Ellipsoid defines affected area
- Per-vert values for selected area
- Determine falloff
- Overlap planar projection
- Only brightest area culls
Blowing a Hole

- Ellipsoid defines affected area
- Per-vert values for selected area
- Determine falloff
- Overlap planar projection
- Only brightest area culls
- Other non-black pixels contribute to blood masking
The Insides

❖ Boolean with stretched sphere = ellipsoid cull
❖ Full interior model used as reference to keep wounds aligned
❖ Use fields and nurbs soft-bodies in Maya to wrap section of interior model
❖ Additional sculpting and painting in Mudbox: normal-mapping
❖ Skin to infected skeleton
 • Spawned wound will attach to infected and deform with it
Slashing Damage

- Melee weapons bring players in range of common infected attacks
- Without wounds, power of weapons not visible: playtesters only saw drawbacks
- Adding wounds helped playtesters understand one-hit kills, ability to hit multiple infected with a single swing
- Adoption of the melee weapons increased
Slashing Damage

- Collapsing ellipsoid into disk resulted in stretched textures
- Added second shape for cull to texture for slash
- Directionality a factor in selecting a wound
Discussion

❖ Drawbacks
 • Texture Stretching

❖ Advantages
 • Add multiple wounds before infected dies!
 • Easy to iterate
 • No extra mesh data to store

❖ Next steps
 • Improve pipe bomb, grenade launcher and chainsaw with massive damage
Massive Damage

- Chainsaw, pipe bomb, grenade launcher: Communicate power of most destructive weapons
- Culling a torso as easy as culling an arm
Measuring Success

- 54 wounds each for males, females
 - Multiple wounds increase variety
- Each wound only 13% of the cost from old system
- Vertex shader uses another 15 instructions
 - Fill-bound, so rendering perf impacted minimally
- Pixel Shader uses 7 more instructions
 - Big whoop
- Horde and wound system together:
 - 1.5x as expensive
 - 10x variation, 156x the number of ways to die
- Visually a big hit with playtesters
 - “Loved pipe bomb gibbage”
 - “Big step above L4D...loved details like ribs showing”
- Improved player satisfaction with melee weapons
How do we improve visuals, add more content, but not blow our budget?

- Trade memory for computation
 - Re-arrange content for small footprint
 - Reconstitute/remix in shader
- Produce less content, more variation, iterate faster