
Shading a Bigger, Better Sequel
Techniques in Left 4 Dead 2

BRONWEN GRIMES, VALVE

Left 4 Dead 2

 Onion AV Club's Best Games of 2009 Pick
 Gamasutra's Best Of 2009: Top 10 Games Of The Year Pick
 PC Gamer's Shooter of the Year 2009
 IGN's Best Multiplayer Game 2009
 Gamespot's Best Cooperative Multiplayer Game 2009
 GamerVision's Best Ever Multiplayer 2009
 Gamereactor's Co-Op Game of the Year and Online Game of the

Year
 Planet Xbox 360's Best Co-Op Experience of 2009
 Spike TV's Video Game Awards 2009 Best Xbox 360 Game
 Ironhammers' Game of the Year

Same Platform, More Content

Xbox 360 target
More Content:

• 4 hi-res boss characters that can appear anywhere
• Maps 30% longer
• 7800 lines of dialogue, 40% increase from L4D1
• Melee weapons
• Animation
• Effects

How do we improve visuals, add more content, but
not blow our budget?

The Zombie Apocalypse

Shipping in a year: pick high-impact systems
Survive the zombie apocalypse: interaction with the

horde
Focus on improving that experience:

• Horde variation
• Weapon feedback

Lots of data from first game
• What was expensive or hard to author
• What worked and what didn’t

The Horde

Variation in Left 4 Dead 1

Playtesters recalled these variants
• Cop is good, he’s “local flavor” in some game areas
• Others are like extras, should be visible but not memorable

Dedicated textures for body geometry

Variation in Left 4 Dead 1

Limited sharing of head textures, mostly on males
• Not all maps look good on all geo variations

Variation in Left 4 Dead 1

Color tinting by multiplication
Light/dark details must be visible under all tints

• Untinted, has medium-value base to allow contrasting detail
Starts dark, only gets darker

Analysis

What didn’t work
• Texture variation that didn’t change contrast
• Fine detail of any sort

Analysis

What did:
• Geometry variation that changed proportions or moved

features around

• Large, different color shapes: Color blocking

Color Blocking

Concept from traditional
painting

Under-painting of local color
without applying shading or
detail

Figuring out the local color:
what do you see from a
distance?

What We Learned

Tinting must change
color blocking

Best if it affects contrast
between local areas of color

Geometric variation must
also affect color blocking

What We Learned

Color blocking also works at
close range

Blood patterns helped get
mileage out of variants
playtesters mistakenly
perceived as clones

Prototyping the Variation System

Prototype in external app, no overhead of
implementation in-engine until we’re sure

Choose app that allows distribution to end users
• Maya’s HLSL plugin

Start with biggest effect for least investment: Tinting
• Gradient mapping?

Gradient Mapping

 Just like in Photoshop!

 Luminance values only
 Map every pixel with same luminance to color specified in gradient

ramp

 Overdoing the colors doesn’t work

Gradient Mapping

Gradient Mapping

Fits well with DXT compression scheme
• Needs single channel only
• Alpha has most fidelity
• Alpha compresses independently from RGB

Can’t overdo the colors, but can’t tint entire character
with the same gradient ramp

Avoid Monochrome Results

RGB can be used for masks
Mask skin and clothing separately

Masking Blood and Grime

L4D1:
• Players identified different

textures as clones
• Used blood to differentiate

similar textures

L4D2:
• Players should identify same

texture as different
• Apply blood masking to disguise

identical textures

Masking Blood and Dirt

Use masking to add blood
Store all variants in existing

texture
• Split texture into quadrants
• Store 4 masks in dedicated

channel

2 texture lookups:
• ¼ size to select a single mask
• Full-size to get lum from alpha

Do the same for grime

Detail Texture

Blood is a solid color -- Grime doesn’t have to be
Use a detail texture

• Can vary depending on environment

Initial Results

Discussion and Additional Feature Requests

 Initial results promising: good overall range of luminosity
 Individuals still relatively monochrome
 Blood splats a bit blurry since masks are ¼ sized
 Unfinished goal for L4D1: retro-reflective effect of tapetum

lucidum (eye-glow in headlights) signaling inhuman nature of
infected

 Specular masking: important because of lack of normal maps
• Wait… no normal maps?
• Texture budget is limited: using normal maps means halving our

texture budget, which means half the variation
• We’ve got to look at the fidelity of the horde as a whole, not its

individual members

Discussion and Additional Feature Requests

…6 masks?! In 3 channels?!
• Skin tint
• Cloth tint
• Blood
• Grime
• Retro-reflectivity
• Specularity

Already gave up normal maps for variation
• No way are we adding another texture just for masks!

Exclusive Masking

Cloth and Skin don’t overlap
Can use different value ranges to mask each effect

Exclusive Masking

Cloth and Skin don’t overlap
Can use different value ranges to mask each effect

Exclusive Masking

Modify mask in shader
using levels-like
operation

Move the blackpoint to
ignore all values below
127

Result is skin-tint mask

Exclusive Masking

Do the same for cloth-
tint mask, but invert first

Ignore all values above
127

Result is cloth-tint mask

Exclusive Masking

Result: can mask two
separate gradient
mappings using a single
channel

Only works because the
masked areas don’t
overlap

Storing Information

Use exclusive masking and pair up effects
• Spec…Detail
• Blood…Retro-reflectivity
• Clothing tint…Skin Tint
• And of course luminosity in the alpha

Storing Information

Use specular mask from detail’s alpha in detail-
masked zones

Can pair blood and retro-reflectivity, if blood gets
priority
• Blood on top of a retro-reflective material damps the retro-

reflectivity anyway

Storing Information

Smoothstep for blood patterns
• Lose some painted detail, get back hard edges

Storing Information

Last problem: individual infected still look relatively
monochrome
• Modify ranges in luminosity for further color variation
• Create more complex gradient ramp, limit luminosity in

areas to map to only a portion of the ramp

Modifying Ranges

Modifying Ranges

Modifying Ranges

Modifying Ranges

Modifying Ranges

Need buffer between ranges because of compression

Results

Geometric Variation

Much of texture is shared, helps render batching
Texel density in areas players focus on:

• Torso: Center of gravity, direction of motion, intent to move
• Head: AI has spotted a target
• Hands: Attack

Authoring Textures

All geo vars made first, unwrapped together
Lots of steps, high probability of user error

• Obvious candidate for scripting

Let texture artists see the final result while working
Shader does a lot of compositing with the masks

• Photoshop is pretty good at compositing too, hmm?

Let’s review what the shader does

Review

Authoring Textures

Create standard configuration with named layer sets
Script setup and reconstruction

• Use gradient adjustment layers, pattern layers, and solid
layers for masked effects

• Blood and detail painted at full size, one at a time, and
hidden when not needed

• Luminosity painted at full range, levels adjustment layers
push values into correct ranges for gradient mapping

• Specular mask painted in same file, hidden when not
needed

Result: Photoshop looks remarkably congruent with
in-game result

Authoring Textures

Authoring Textures

Authoring Textures

Authoring Textures

Zombie Recipe

Each infected contains:
• 2-3 head textures with 4 blood patterns each
• 4-7 head geometry variations
• 1 body texture with 4 blood patterns
• 3-8 body geometry variations
• Detail from shared texture
• 8 skin tints and 8 clothing tints from shared 16x256 texture

• “Uncommon” common infected like construction guy in
previous slide have their own dedicated palette

Zombie Recipe

Simplest infected has over 24,000 variations

Levels use as many as 6 models, as few as 2
• Depends on memory, costuming

Creation time is less: made fewer, more effective
textures

Final Results

Measuring Success

50% less memory
10x variation
Lighting is done per vert instead of per pixel

• Vertex shader instructions increased by ~100
• Pixel shader comparable with L4D1

Only “uncommon commons” stand out

The Wound System

Game-Level Goals

Player experiences a zombie apocalypse horror film
with their friends
• Zombies are endless, oblivious to hurt

Provide feedback appropriate to type/level of weapon
• Communicate power of weapon
• Easily identify hurt or dispatched targets

Wounds in Left 4 Dead 1

Built-in, expensive for vert mem
5 variations only, all hand-authored for each zombie
Requires texture support, expensive for texture mem
Always Fatal, doesn’t support “oblivious to hurt”

First Attempts

Place instanced wound object
Deform or cut
Geo level not good enough

• Deformation boundaries too
dissimilar if mesh tesselation
is not the same

Place instanced wound object
Deform or cut
Geo level not good enough
Pixel Level has own problems

• Cut too uniform, doesn’t look like
damage

First Attempts

First Attempts

Place instanced wound object
Deform or cut
Geo level not good enough
Pixel Level has own problems
Meat flowers not the way to go

First Attempts

Place instanced wound object
Deform or cut
Geo level not good enough
Pixel Level has own problems
Meat flowers not the way to go
Place geo inside: seams have to look messier

Blowing a Hole

Ellipsoid defines affected area

Blowing a Hole

Ellipsoid defines affected area
Per-vert values for affected area

Blowing a Hole

Ellipsoid defines affected area
Per-vert values for selected area
Determine falloff

Blowing a Hole

Ellipsoid defines affected area
Per-vert values for selected area
Determine falloff
Overlap planar projection

Blowing a Hole

Ellipsoid defines affected area
Per-vert values for selected area
Determine falloff
Overlap planar projection
Only brightest area culls

Blowing a Hole

Ellipsoid defines affected area
Per-vert values for selected area
Determine falloff
Overlap planar projection
Only brightest area culls
Other non-black pixels contribute

to blood masking

The Insides

 Boolean with stretched sphere = ellipsoid cull
 Full interior model used as reference to keep wounds aligned
 Use fields and nurbs soft-bodies in Maya to wrap section of

interior model
 Additional sculpting and painting in Mudbox: normal-mapping
 Skin to infected skeleton

• Spawned wound will attach to infected and deform with it

The Insides

Slashing Damage

 Melee weapons bring players
in range of common infected
attacks

 Without wounds, power of
weapons not visible:
playtesters only saw
drawbacks

 Adding wounds helped
playtesters understand one-hit
kills, ability to hit multiple
infected with a single swing

 Adoption of the melee
weapons increased

Slashing Damage

Collapsing ellipsoid into
disk resulted in stretched
textures

Added second shape for
cull to texture for slash

Directionality a factor in
selecting a wound

Discussion

Drawbacks
• Texture Stretching

Advantages
• Add multiple wounds before infected dies!
• Easy to iterate
• No extra mesh data to store

Next steps
• Improve pipe bomb, grenade launcher and chainsaw with

massive damage

Massive Damage

Chainsaw, pipe bomb,
grenade launcher:
Communicate power of
most destructive weapons

Culling a torso as easy as
culling an arm

Measuring Success

 54 wounds each for males, females
• Multiple wounds increase variety

 Each wound only 13% of the cost from old system
 Vertex shader uses another 15 instructions

• Fill-bound, so rendering perf impacted minimally
 Pixel Shader uses 7 more instructions

• Big whoop
 Horde and wound system together:

• 1.5x as expensive
• 10x variation, 156x the number of ways to die

 Visually a big hit with playtesters
• “Loved pipe bomb gibbage”
• “Big step above L4D…loved details like ribs showing”

 Improved player satisfaction with melee weapons

How do we improve visuals, add more
content, but not blow our budget?

Trade memory for computation
• Re-arrange content for small footprint
• Reconstitute/remix in shader

Produce less content, more variation, iterate faster

