
Illustrative Rendering in Team Fortress 2

Jason Mitchell∗
Valve

Moby Francke†

Valve
Dhabih Eng‡

Valve

(a) Concept art (b) Character in the game

Figure 1: (a) Concept Art (b) Character as seen by players during gameplay

Abstract

We present a set of artistic choices and novel real-time shading
techniques which support each other to enable the unique render-
ing style of the game Team Fortress 2. Grounded in the conven-
tions of early 20th century commercial illustration, the look of Team
Fortress 2 is the result of tight collaboration between artists and en-
gineers. In this paper, we will discuss the way in which the art
direction and technology choices combine to support artistic goals
and gameplay constraints. In addition to achieving a compelling
style, the shading techniques are designed to quickly convey geo-
metric information using rim highlights as well as variation in lumi-
nance and hue, so that game players are consistently able to visually
“read” the scene and identify other players in a variety of lighting
conditions.

CR Categories: I.3.0 [Computing Methodologies]: Computer
Graphics—General; I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques

Keywords: non-photorealistic rendering, lighting models, shad-
ing, hardware rendering, video games

1 Introduction

We present a set of artistic choices and real-time shading techniques
which support each other to enable the unique Non-Photorealistic

∗e-mail: jasonm@valvesoftware.com
†e-mail: moby@valvesoftware.com
‡e-mail: dhabih@valvesoftware.com

Rendering (NPR) style of Team Fortress 2. Grounded in the con-
ventions of early 20th century commercial illustration with 1960s
industrial design elements, the look of Team Fortress 2 is the result
of close collaboration between artists and engineers. At Valve, we
believe in having the two disciplines heavily influence each other
and, in this paper, we will discuss the ways in which art and technol-
ogy choices combine to support stylistic goals and gameplay con-
straints. While most non-photorealistic rendering techniques are
presented on a single rigid model in no particular lighting envi-
ronment, we will demonstrate a series of interactive rendering tech-
niques which result in a cohesive and dynamic environment. Rather
than merely achieving a stylized look, the shading techniques are
designed to quickly convey geometric information in our desired
illustrative style using variation in luminance and hue, so that game
players are consistently able to visually “read” the scene and iden-
tify other players in a variety of lighting conditions.

For Team Fortress 2, the 2007 sequel to the popular Half-Life mod
Team Fortress Classic, we sought to explicitly differentiate our-
selves from other multiplayer deathmatch games which typically
embrace a modern photorealistic look. In Team Fortress 2, we
chose to employ an art style inspired by the early to mid 20th cen-
tury commercial illustrators J. C. Leyendecker, Dean Cornwell and
Norman Rockwell [Schau 1974]. These artists were known for il-
lustrating characters using strong, distinctive silhouettes with em-
phasis on clothing folds and they tended to use shading techniques
which accentuated the internal shape of objects and characters with
patterns of value while emphasizing silhouettes with rim highlights
rather than dark outlines, as shown in the concept art in Figure 1a.

Contributions of this paper include the codification of key conven-
tions of the commercial illustrations of Leyendecker, Cornwell and
Rockwell as well as methods for generating such renderings in a
real-time game. Specific technical contributions include the imple-
mentation of a diffuse light warping function appropriate for illus-
trative rendering, a novel formulation of rim lighting and an overall
balance of photorealistic and non-photorealistic shading techniques
to achieve the desired look while serving gameplay goals.

In the next section, we will discuss previous work which relates to
ours. In Section 3, we will enumerate the specific properties com-
mon to commercial illustration which define our style. In Section 4,
we will briefly discuss the creation of art for Team Fortress 2. In



Section 5, we will discuss our shading algorithms in detail, before
concluding with the topics of abstraction and future work.

2 Related Work

Non-photorealistic rendering styles can vary greatly, though they
all ideally draw from some real-world artistic techniques under the
assumption that such techniques developed by humans have inher-
ent value due to the evolutionary nature of art. In the existing NPR
literature, the commercial illustrative styles which inspired the look
of Team Fortress 2 are most closely related to the technical illustra-
tion techniques codified in [Gooch et al. 1998]. In Gooch shading,
the traditional Phong model [Phong 1975] is modified using a cool-
to-warm hue shift to indicate surface orientation relative to a given
light source. As a result, extreme lights and darks are reserved for
edge lines and highlights, resulting in a clearer perception of 3D
object structure under difficult lighting situations than traditional
computer graphics lighting models. In the world of Team Fortress 2,
characters and other objects can be viewed under a wide variety of
lighting conditions and thus we employ a similar system so that
characters are clearly identifiable and aesthetically pleasing even in
difficult lighting situations.

While the Gooch shading algorithm maps an unclamped Lamber-
tian term to a warm-to-cool hue shift to improve shape perception,
others have created a cel-shaded look by mapping this term to a
very small set of colors with a hard transition at the terminator
(where the Lambertian term crosses zero) [Decaudin 1996] [Lake
et al. 2000] [Barla et al. 2006]. To achieve a cel-shaded look, De-
caudin rendered objects with constant diffuse colors and relied upon
shadow mapping to attenuate pixels facing away from a given light
source. Lake does not rely upon shadow mapping but instead uses a
1D texture lookup based upon the Lambertian term to simulate the
limited color palette cartoonists use for painting cels. Lake’s tech-
nique also allows for the inclusion of a view-independent pseudo
specular highlight by including a small number of bright texels
at the “lit” end of the 1D texture map. Most recently, Barla has
extended this technique by using a 2D texture lookup to incorpo-
rate view-dependent and level-of-detail effects. Barla also uses a
Fresnel-like term to create a hard “virtual backlight” which is es-
sentially a rim-lighting term, though this term is not designed to
correspond to any particular lighting environment.

3 Commercial Illustration Techniques

In the work of the early 20th century commercial illustrators
J. C. Leyendecker, Dean Cornwell and Norman Rockwell as well
as our own internal concept art, we observed the following consis-
tencies which we used to define the look of Team Fortress 2:

• Shading obeys a warm-to-cool hue shift. Shadows go to cool,
not black.

• Saturation increases at the terminator with respect to a given
light source. The terminator is often reddened.

• High frequency detail is omitted where possible

• On characters, interior details such as clothing folds are cho-
sen to echo silhouette shapes

• Silhouettes are emphasized with rim highlights rather than
dark outlines

With these fundamental principles in mind, we set out to create art
assets (characters, environments and texture maps) and real-time
shading algorithms that result in renderings with these properties.
In the next section, we will discuss creation of art assets for Team
Fortress 2, before moving on to the technical shading details in Sec-
tion 5.

4 Creating Art Assets

In this section, we will discuss 3D character and world modeling
as well as the principles we followed when generating texture maps
necessary to meet both our gameplay and artistic goals.

4.1 Character Modeling

Players of multiplayer combat games such as Team Fortress 2 must
be able to visually identify other players very quickly at a variety of
distances and viewpoints in order to assess the possible threat. In
Team Fortress 2 in particular, the player’s class—Demo, Engineer,
Heavy, Medic, Pyro, Spy, Sniper, Soldier or Scout—is extremely
important to gameplay and hence the silhouettes of the nine classes
were carefully designed to be very distinct from one another, as
shown in Figure 2.

Figure 2: The nine character classes of Team Fortress 2 were de-
signed to be visually distinct from one another. Even when viewed
only in silhouette with no internal shading at all, the characters
are readily identifiable to players. While characters never appear
in such unflattering lighting conditions in Team Fortress 2, demon-
strating the ability to visually read the characters even with no in-
ternal detail was used to validate the character design during the
concept phase of the game design.

The body proportions, weapons and silhouette lines as determined
by footwear, hats and clothing folds were explicitly designed to
give each character a unique silhouette. In the shaded interior areas
of a character, the clothing folds were explicitly designed to echo
silhouette shapes in order to emphasize silhouettes, as observed in
the commercial illustrations which inspired our designs. As we will
discuss in Section 5, the shading algorithms used on these charac-
ters complement our modeling choices to enhance shape percep-
tion.

4.2 World Modeling

The unique look of the world of Team Fortress 2 is borne out of
well-defined design principles. For the architectural elements of
the world associated with each of the two teams, blue and red, we



defined specific contrasting properties. While the red team’s base
tends to use warm colors, natural materials and angular geometry,
the blue team’s base is composed of cool colors, industrial materi-
als and orthogonal forms, as illustrated by the concept paintings of
opposing building structures in the top row of Figure 3.

Figure 3: World concept art for blue and red team bases (top) and
in-game screenshots from Team Fortress 2 (bottom)

Ultimately, the geometry of the game environments was modeled
on these concept paintings, as shown in the bottom row of Figure 3.
Though there is clearly more detail in the 3D modeled world than
there is in the concept paintings, we still we deliberately avoided
modeling the world in an overly complex or geometrically off-kilter
manner as this would add an unnecessary level of visual noise—
not to mention memory-hungry vertices—to the scene. We also
found that keeping repetitive structures such as the bridge trusses,
telephone poles or railroad ties to a minimum is preferable for our
style, as conveying the impression of repetition in the space is more
important than representing every detail explicitly.

By maintaining a minimal level of repetition and visual noise, we
serve many of our gameplay goals while employing an almost im-
pressionistic approach to modeling. This philosophy was also cen-
tral to our texture painting style throughout the game.

4.3 Texture Painting

In Team Fortress 2, colors used on characters and the game world
border on realism, but with increased saturation and value contrast.
The blue and red teams in the game each have one base in a game
level. The red and blue colors used to paint opposing bases are
analogous to one another, as guided by the reference color swatch
in Figure 4, with muted colors dominating and small areas of satu-
ration to give further visual interest.

In addition to the dominant reds and blues, secondary and tertiary
complimentary colors are added in smaller environmental props
such as fire extinguishers and telephones. In general, the texture
maps used on the 3D world are impressionistic, meaning that they
are painterly and maintain a minimum level of visual noise. This
is consistent with the style of painting used on background plates
in many animated films, particularly those of Hayao Miyazaki, in
which broad brush strokes appear in perspective, as if present in
the 3D world rather than on the 2D image plane [Miyazaki 2002].
For our 3D game, we apply this same approach because we feel
that its inherent frame-to-frame coherence has superior perceptual

Figure 4: Color scheme for the opposing blue and red teams

properties to an image-space painterly approach. Of course, it also
helps that portraying brush strokes on the surfaces of 3D objects in
a game world rather than the 2D image plane is already supported
in any 3D game engine by definition.

2D Texture Texture applied in 3D

Figure 5: World texture with loose, visible brush strokes

Much of the world texture detail in Team Fortress 2 comes from
hand-painted albedo textures which intentionally contain loose de-
tails with visible brush strokes that are intended to portray the tactile
quality of a given surface, as shown in Figure 5. In the early stages
of development, many of these 2D textures were physically painted
on canvas with watercolors and scanned to make texture maps. As
we refined the art style of the game, texture artists shifted to using
photorealistic reference images with a series of filters and digital
brush strokes applied to achieve the desired look of a physically
painted texture.

Not only does this hand-painted source material create an illustra-
tive NPR style in rendered images, but we have found that these
abstract texture designs hold up under magnification better than
textures created from photo reference due to their more intentional
design and lack of photo artifacts. Furthermore, we believe that
high frequency geometric and texture detail found in photorealis-
tic games can often overpower the ability of designers to compose
game environments and emphasize gameplay features visually us-
ing intentional design choices such as changes in color value.

Now that we have discussed Team Fortress 2 asset creation, we will
move on to the unique aspects of our character and model shading
algorithms which work together with our asset choices to achieve a
unique illustrative style and enable players to easily identify other
players in the scene.



5 Interactive Character and Model Shading

In this section, we will discuss the non-photorealistic shading algo-
rithms used on the characters and other models in Team Fortress 2
in order to achieve our desired illustrative style. For characters and
most other models in our game worlds, we combine a variety of
view independent and view dependent terms as shown in Figure 6.

The view independent terms consist of a spatially-varying direc-
tional ambient term plus modified Lambertian lighting terms. The
view dependent terms are a combination of Phong highlights and
customized rim lighting terms. All lighting terms are computed
per pixel and most material properties, including normals, albedos,
specular exponents and various masks are sampled from texture
maps. In the following two sections, we will discuss how each
of these lighting terms differs from conventional approaches and
contributes to our aesthetic goals.

5.1 View Independent Lighting Terms

The view-independent lighting terms in Team Fortress 2 consist of
a summation of modified Lambertian terms and a spatially varying
directional ambient term. The view-independent lighting terms can
be summarized in Equation 1:

kd

[
a(n̂)+

L

∑
i=1

ciw
((

α
(
n̂ · l̂i

)
+β

)γ)
]

(1)

where L is the number of lights, i is the light index, ci is the color
of light i, kd is the albedo of the object sampled from a texture map,
n̂ · l̂i is a traditional unclamped Lambertian term with respect to light
i, the scalar constants α , β and γ are a scale, bias and exponent
applied to the Lambertian term, a() is a function which evaluates a
directional ambient term as a function of the per-pixel normal n̂ and
w() is a warping function which maps a scalar in the range of 0..1
to an RGB color.

Half Lambert One unusual feature of Equation 1 is the scale, bias
and exponentiation applied to n̂ · l̂i. Since our first game Half-Life,
which shipped in 1998, we have been applying a scale by 0.5, bias
by 0.5 and square to diffuse lighting terms to prevent characters
from losing a sense of shape on the back side with respect to a
given light source (α = 0.5, β = 0.5 and γ = 2). Even in our games
which feature a more photorealistic look, we perform this operation
so that the dot product which normally lies in the range of−1 to +1,
instead lies in the range of 0 to 1 and has a pleasing falloff [Mitchell
et al. 2006]. Due to the scale and bias of the Lambertian term by
0.5, we refer to this technique as “Half Lambert.” This kind of
scale and bias of the traditional Lambertian term appears in other
NPR shading work including [Rusinkiewicz et al. 2006]. In Team
Fortress 2, we leave α and β at 0.5 but set the exponent γ to 1
since we can express any shaping that we might want to get from
the exponentiation in the warping function w().

Diffuse Warping Function The second interesting feature of
Equation 1 is the warping function w() which is applied to the Half
Lambert term. The goal of this function is to retain the shading in-
formation conveyed by the Half Lambert term while introducing the
dramatic terminator observed in commercial illustration. In Team
Fortress 2, this warping function is evaluated with a lookup into the
artist-generated 1D texture shown in Figure 7. This is the same ap-
proach taken by [Lake et al. 2000] but instead of using this texture

(a) Albedo (b) Warped diffuse

(c) Ambient cube (d) (b) + (c)

(e) (a) * (d) (f) Specular

(g) Rim lighting (h) Specular + Rim Lighting

(j) Final result

Figure 6: Individual character and model shading terms

indirection to create a cartoon “hard shading” look, we preserve the
variation in illumination for all normals while tightening the transi-
tion from light to dark around the terminator as shown in Figure 6b.



Figure 7: Typical diffuse light warping function

Besides the general “shaping” of the lighting described above, the
1D light warping texture in Figure 7 has a number of interesting
features. First, the rightmost value in the texture is not white but
is, rather, only slightly brighter than mid-gray. This is done be-
cause there is a multiplication by 2 in the pixel shader after the
lookup from this texture map. This allows the artists to paint values
into this 1D lookup texture which are up to two times “overbright,”
meaning that while the input to this function is a Half Lambert term
in the 0..1 range, the output is in the 0..2 range. It is also important
to note that this texture has essentially three regions: a grayscale
gradient on the right, a cool gradient on the left and a small reddish
terminator region in the middle. This is consistent with our obser-
vations that illustrated shadows often tend toward cool colors, not
black, and that there is often a slight reddening at the terminator.
We will discuss potential future extensions to this model such as
tuning the warping function to suit the hue of the underlying albedo
in Section 7. As shown in Equation 1, this warping function is ap-
plied to the scalar Half Lambert term for each of the diffuse light
sources affecting an object, resulting in an RGB color which is sub-
sequently modulated with ci, the color of the light source, resulting
in a diffuse lighting component as illustrated in Figure 6b.

Directional Ambient Term In addition to the simple summa-
tion of warped diffuse lighting terms, we also apply a directional
ambient term, a(n̂). Though the representation is different, our
directional ambient term is equivalent to an irradiance environ-
ment map, as discussed in [Ramamoorthi and Hanrahan 2001].
Rather than a 9-term spherical harmonic basis, however, we use a
novel 6-term basis which we call an “ambient cube,” using cosine-
squared lobes along positive and negative x, y and z axes [McTag-
gart 2004] [Mitchell et al. 2006]. These ambient cubes are pre-
computed by our offline radiosity solver and stored in an irradiance
volume for fast access at run time [Greger et al. 1998]. Despite
the simplicity of this lighting component, shown in isolation in Fig-
ure 6c, the ambient cube term contributes bounced light which is
critical to truly grounding characters and other models in the game
world. The summation of these view-independent lighting terms,
shown in 6d, is multiplied with kd , the albedo of the base material
(6a), resulting in a diffusely lit character as shown in Figure 6e.

Now that we have discussed our modifications to traditional view-
independent lighting algorithms, we will move on to the extensions
we have made to typical approaches to view-dependent lighting.

5.2 View Dependent Lighting Terms

Our view dependent lighting terms consist of traditional Phong
highlights combined with a set of customized rim lighting terms
as summarized in Equation 2.

L

∑
i=1

[
ciksmax

(
fs (v̂ · r̂i)

kspec , frkr (v̂ · r̂i)
krim

)]
+(n̂ · û) frkra(v̂) (2)

where L is the number of lights, i is the light index, ci is the color of
light i, ks is a specular mask painted into a texture channel, v̂ is the
view vector, fs is an artist-tuned Fresnel term for general specular
highlights, r̂i is the reflection of the light vector from light i about n̂,

û is a world-space up vector, kspec is the specular exponent fetched
from a texture map, krim is a constant exponent which controls the
breadth of the rim highlights, fr is another Fresnel term used to
mask rim highlights (typically just (1− (n̂ · v̂))4), kr is a rim mask
texture used to attenuate the contribution of the rim terms on certain
parts of a model and a(v̂) is an evaluation of the ambient cube using
a ray from the eye through the pixel being rendered.

Multiple Phong Terms The left side of Equation 2 contains a
summation of Phong highlights calculated with the familiar expres-
sion (v̂ · r̂i)

kspec which is modulated with appropriate constants and
a Fresnel term. However, inside the summation, we also combine
each Phong highlight using a max() function with additional Phong
lobes that use a different exponent krim, Fresnel term fr and mask
kr. In Team Fortress 2, krim is constant for a whole object and sig-
nificantly lower than kspec, yielding broad rim highlights from the
lights in the scene, independent of the object’s material properties.
These broad rim highlights are masked with a Fresnel term fr, en-
suring that they are only present at grazing angles (the very def-
inition of a rim light). This combination of Phong highlights that
match the material properties of a given object with broad rim high-
lights helps to give Team Fortress 2 its signature illustrative look.

Dedicated Rim Lighting In situations where a character has
moved away from the light sources in the game level, rim lighting
based solely on Phong terms from local light sources may not be
as prominent as we would like. For this reason, we also add in the
dedicated rim lighting term shown on the right side of Equation 2.
This term consists of an evaluation of the ambient cube using the
vector from the eye through the point being shaded a(v̂) modulated
with an artist-painted mask texture kr, Fresnel term fr and the ex-
pression n̂ · û. This last expression is merely the per-pixel normal
dotted with the up vector, clamped to be positive. This causes the
dedicated rim lighting term to appear to add in indirect light from
the environment, but only for upward facing normals. This is both
an aesthetic choice and a perceptual decision designed exploit the
human instinct to assume that lighting tends to come from above.

Unlike photorealistic games, which place a major emphasis on mi-
cro details for realism, we feel that our impressionistic approach
favors the audience of fast-paced action games who typically play
a game like Team Fortress 2 many thousands of times and are more
concerned with perceiving gross shape and shading as emphasized
by our focus on distinctive silhouettes and rim lighting.

The complete pixel shader used on characters and other models
in Team Fortress 2 is merely the summation of Equations 1 and 2
in addition to some other operations such as optional environment
mapping and a distance fog term, which we have left out for brevity.
Since we evaluate fog directly in pixel shader code, we chose not to
build it into the per-light texture indirection as proposed by [Barla
et al. 2006].

6 Abstraction

Abstraction at distance is an important property of many NPR sys-
tems. For the most part, we rely on automatic mechanisms of ab-
straction such as depth fogging, minification of normal maps which
tends to smooth out diffuse lighting, as well as SpecVar mapping
to attenuate and broaden specular highlights at a distance [Conran
2005]. Since we do not apply image-space techniques such as out-
lining, we do not have to deal with issues of varying line weights,



though our designers do intentionally simplify the shape and shad-
ing of our 3D skybox. In our graphics engine, the 3D skybox is
a separate model which surrounds the game world but which is
unreachable by players. This distant environment is not merely a
painted backdrop on the inside of some simple geometry such as a
large cube or sphere, but is a distant geometric model which pro-
vides parallax cues within itself and relative to the reachable game
world. For Team Fortress 2 in particular, 3D skybox geometry tends
to be more painterly and is specifically modeled with less detail
than it would be if it were in the interactive portions of the environ-
ment. This is not just to manage level of detail, but also fits with
the overall visual style and prevents the skybox from generating
high-frequency noise that would distract players.

7 Future Work

In future projects that call for illustrative rendering, we would like
to further extend the model described above. For example, we have
already experimented with extending our modification of the tradi-
tional Lambertian term to increase saturation of the particular hue
of the albedo texture. To do this, we compute the hue of the albedo
using shader operations and use the hue as the second coordinate
into a 2D map which is an extension to the 1D map shown in Fig-
ure 7, where hue varies along the new axis. In practice, even a
tightly optimized RGB-to-Hue conversion routine compiles to more
than twenty pixel shader cycles, and we weren’t willing to bear this
expense on Team Fortress 2 era hardware. In the future, we would
like to be able to include this kind of extension to our diffuse model.

For our specular model, we have employed traditional Phong high-
lights in addition to our dedicated rim lighting. At the very least,
we would like to extend this to allow for anisotropic materials
such as cloth or brushed metals, using a combination of methods
from [Gooch et al. 1998], [Heidrich and Seidel 1998] and [Gooch
et al. 1999]. It might also be interesting to use stylized material-
specific highlights by employing translation, rotation, splitting and
squaring operations as discussed in [Anjyo and Hiramitsu 2003].

On parts of models which have relatively coarse tessellation, the
slowly-varying tangent frames can result in overly-broad Fresnel
terms, leading to rim highlights that are more obtrusive than we
would like. In the future, we would like to look for methods to
address this so that we can reliably generate more consistent and
subtle rim highlights on polygonal models of varying mesh density.

Since our Source game engine has been previously used to de-
velop a set of games such as the Half-Life 2 series, Counter-Strike:
Source and Day of Defeat: Source, which employ a more photo-
realistic rendering style, we have access to existing techniques for
generating realistic effects such as motion blur, high dynamic range
rendering, environment mapping as well as reflective and refrac-
tive water [McTaggart and Green 2006]. While rendering water
with faithful photorealistic reflections of an otherwise NPR world
is compelling, we would like to experiment with processing our re-
flection, refraction and environment maps with a filter such as an
edge-preserving median filter to further stylize our water and other
reflective effects.

Many traditional artists use image-space lightening and darkening
techniques to increase contrast at important feature edges, as dis-
cussed in [Luft et al. 2006]. We believe it would be appropriate for
our visual style to use scene depth information to integrate this type
of technique into the look of Team Fortress 2.

References

ANJYO, K., AND HIRAMITSU, K. 2003. Stylized Highlights for
Cartoon Rendering and Animation. IEEE Comput. Graph. Appl.
23, 4, 54–61.

BARLA, P., THOLLOT, J., AND MARKOSIAN, L. 2006. X-Toon:
An Extended Toon Shader. In International Symposium on Non-
Photorealistic Animation and Rendering (NPAR), ACM.

CONRAN, P. 2005. SpecVar Maps: Baking Bump Maps into
Specular Response. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Sketches, ACM Press, New York, NY, USA, 22.

DECAUDIN, P. 1996. Cartoon Looking Rendering of 3D Scenes.
Research Report 2919, INRIA, June.

GOOCH, A. A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998.
A Non-Photorealistic Lighting Model for Automatic Technical
Illustration. ACM Press/ACM SIGGRAPH, New York, M. Co-
hen, Ed., 447–452.

GOOCH, B., SLOAN, P.-P. J., GOOCH, A. A., SHIRLEY, P., AND
RIESENFELD, R. 1999. Interactive Technical Illustration. In
Proceedings of the 1999 Symposium on Interactive 3D Graphics,
ACM Press, New York, J. Rossignac, J. Hodgins, and J. D. Foley,
Eds., 31–38.

GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG,
D. P. 1998. The Irradiance Volume. IEEE Computer Graphics
and Applications 18, 2 (/), 32–43.

HEIDRICH, W., AND SEIDEL, H. 1998. Efficient Rendering of
Anisotropic Surfaces Using Computer Graphics Hardware. In
Image and Multi-dimensional Digital Signal Processing Work-
shop, 315–318.

LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN, M.
2000. Stylized Rendering Techniques for Scalable Real-Time 3D
Animation. ACM Press, New York, J.-D. Fekete and D. Salesin,
Eds., 13–20.

LUFT, T., COLDITZ, C., AND DEUSSEN, O. 2006. Image En-
hancement by Unsharp Masking the Depth Buffer. ACM Trans-
actions on Graphics 25, 3 (jul), 1206–1213.

MCTAGGART, G., AND GREEN, C. 2006. High Dynamic Range
Rendering in Valve’s Source Engine. In ACM SIGGRAPH 2006
Course Notes. Course on High-Dynamic-Range Imaging: The-
ory and Applications. ACM Press/ACM SIGGRAPH.

MCTAGGART, G. 2004. Half-Life 2 Shading. In Game Developers
Conference. Direct3D Tutorial.

MITCHELL, J. L., MCTAGGART, G., AND GREEN, C. 2006.
Shading in Valve’s Source Engine. In SIGGRAPH Course on
Advanced Real-Time Rendering in 3D Graphics and Games.

MIYAZAKI, H. 2002. The Art of Spirited Away. VIZ Media.

PHONG, B. T. 1975. Illumination for Computer Generated Pic-
tures. Commun. ACM 18, 6, 311–317.

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An Effi-
cient Representation for Irradiance Environment Maps. In SIG-
GRAPH 2001: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, 497–500.

RUSINKIEWICZ, S., BURNS, M., AND DECARLO, D. 2006. Ex-
aggerated Shading for Depicting Shape and Detail. SIGGRAPH
2006 25, 3 (July), 1199–1205.

SCHAU, M. 1974. J. C. Leyendecker. Watson-Guptill.


