O
\' Dragged Kicking and
- Screaming:

Source Multicore

Tom Leonard, Valve
9 March 2007

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [' M

W Multicore

mi « Most significant development since
CONIRZ= consumer 3D

_ . -|-||'- i
54 Li
C e Frameisce
Ran

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

g @ Most significant development since
coNTROL consumer 3D

- o CISEE

= Explicit parallelism

= Hardware problem becoming software
problem will require new techniques

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

| Jﬂ‘ﬁ' = The decisions faced with multiple cores
Ggr.;g;,a';:?:;:;. = How we are approaching multiple cores
= Algorithms and paradigms

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

mi = Integrate multicore across Valve’s
CONIRZ™ business

= Expose to game programmers, licensees and
MOD authors

ir

: I'||-||-' Y
o w_:l.l_| LL

B ear Francisc?
L3

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

N Goals

mi = Integrate multicore across Valve's
cO! - business

= Scale to cores without recompile

\
» 54, 2007 1P
C e Franeisce
:|-|I'l

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

: Jﬂ‘ﬁ' = Integrate multicore across Valve's
co business

! CraREISER

= Scale to cores without recompile

= Create value beyond framerate
= Apply cores to new gameplay

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

: mi = Games want maximal CPU utilization
COT™% « Games are inherently serial

=« Decades of experience in single threaded
optimization

= Millions of lines of code written for single
threading

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

W\ Strategies
Mi = Threading model
cﬂ = Threading framework

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

*- - Threading Models

: I\mﬁi = Fine grained threading
co! =urs @ Coarse threading

= Hybrid threading

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

W\ Diving In

ke | © Client
: @ User input
« Rendering

@ Graphics simulation

~ Server
@ Al
« Physics
= Game logic

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F [: I] M

W\ Diving In

mi = Experiment: run client and server each
CONIRZ: on own core

_ . -|-||'- i
54 Li
C e Frameisce
Ran

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

JH‘E' = Experiment: run client and server each
cO! - on own core

= Benefits: forced to confront systems that
are not thread safe or not thread efficient

t 58 2007 P
= ¥ Fr;nl’l?'."-'
'_-,:|l'l

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F [: I] M

| g » Problem: shared data access
Gﬂm = Global data
= Static data (optimizations/function local state)
= Singleton objects

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F I: I] M

W\ Discoveries

: Jﬂﬁ' = Problem: shared data access
cgﬂ;;;f;;g;:; = Thread safety is easy!

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

' Discoveries

: Jﬂﬁ' = Problem: shared data access
cgr':j;t,i'ﬂl.!; = Thread safety is easy!
= Slap on a mutex/critical section

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

: mi = Problem: shared data access
Ggr-;g;:.:';:;:;. = Bad thread safety is easy!
= Slap on a mutex/critical section

= The simple thing is the worst thing

@ Mutexes are terrible
@ Excessive waits
@ Error prone
@ Fall to scale

« Establish slow but stable baseline

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c I] M

| = Efficient thread safety
Gﬂ = No synchronization (“wait-free”)
= Each thread has a private copy of all the data
needed to perform operation:
@ Threads working on independent problems
< Replace globals with thread private data
< Reorient to pipeline
= Example: Source “Spatial Partition”

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F [: I] M

\ Discoveries

Server Objects Client Objects

Static Objects

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

W\ Discoveries

iz '.:I'I y
Bl bm,_ﬂnn:lil:-"

Server Objects Client Objects

Static Objects Static Objects

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F E I] M

: g @ Efficient thread safety
cﬂm = No synchronization (“wait-free”)

= Better synchronization tools, techniques
< Analyze data access
= Example: symbol table using read/write lock

= Decouple using queued function calls

"] ’||n: [14]
=l Fr;nl’l?'."-'
San

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F [: I] M

\ Discoveries

mi = What if you can’t eliminate contention
co - over shared resources?

S I
B w_:l.l_| LL
. Francisce
:p-l'l

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

W\ Results

e | > Can approach 2x in contrived maps
cﬂ 5.4, 2007 'r'.

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F E I] M

CORE O CORE 1

CLIENT

I V A L V E © 2007 Valve Corporation. All Rights Reserved.

R T

e

cantem gy

Results

Gom CORE O

CLIENT

SERVER

I V A L V E © 2007 Valve Corporation. All Rights Reserved.

W\ Results

| Jﬂ‘ﬁ' = Can approach 2x in contrived maps
cgrgg;i,z';?;:; « More like 1.2x Iin real single player
= Applicable to 360 Team Fortress 2

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

: - @ Use the appropriate tool for the job
1
Gﬂl’m‘& = Some systems on cores (e.g. sound)

= Some systems split internally in a coarse manner
= Split expensive iterations across cores fine grained
= Queue some work to run when a core goes idle

= Need strong tools
< Maximal core utilization

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c I] M

W\ Hybrid threading: Rendering

| V A L V E | © 2007 Valve Corporation. All Rights Reserved. www_ G I] E U " F_ E n M

Ei @ Problems

CONTRLU- = Per-view scene construction limits
opportunity

= Arbitrary object type order
= Arbitrary code execution

= Simulation and Rendering interleaved
= Lazy calculation optimizations

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F c [' M

= lterative Transition: Skeletal Animation
< Parallelize lazy calculation triggers
= Refactor bone setup into single pass per view
= Refactor into single pass for all views
= Same pattern for other CPU-intensive stages

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www_ G I] B '] H F_ E [I M

= Revised pipeline

= Construct scene rendering lists for multiple scenes in
parallel (e.g., the world and its reflection in water)

= Qverlap graphics simulation

= Compute character bone transformations for all
characters in all scenes in parallel

= Allow multiple threads to draw in parallel
= Serialize drawing operations on another core

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F c [' M

j & Implementing Hybrid Threading

= Programmers solve game development
problems, not threading problems

<« Empower all programmers to leverage cores
=~ Qperating system: too low level

=« Compiler extensions (OpenMP): too opaque
= Talilored tools: correct abstraction

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [' M

Tailored tools: Game
Threading Infrastructure

| 1 @ Custom work management system
cﬂﬂw& = Intuitive for programmers
= Focus on keeping cores busy
= Thread pool: N-1 threads for N cores
= Support hybrid threading

= Function threading
= Array parallelism
= Queued and immediate execution

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [I M

Tailored tools: Game
Threading Infrastructure

1 @ Goal: make system easy to use, hard to
CONTRDE: mess up

o
[k '_ Er ;;'.l'l'?'."-

=« Example: compiler generated functors

= Uses templates to package up functions and
data, point of call looks very similar

= Call arrives on other end as if called normally

« Saves time, reduces error, encourages
experimentation

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B U N F [: [I M

o

N Tailored tools: Game
2\ Threading Infrastructure

g, @ One-off push to another core
confhlL

I = L CramEISER
....

if (!IseEngineThreaded())
_Host_RunFrame_Server(numticks);
else
ThreadeExecute(_Host_RunFrame_Server, numticks);

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

o

N Tailored tools: Game
2\ Threading Infrastructure

| g = Parallel loop
confhoL

" i 5,
parct Fr;nl’l?'."-'
Lan

void ProcessPSystem(CParticleEffect *pEffect);
ParallelProcess(particlesToSimulate.Base(),

particlesToSimulate.Count(),
ProcessPSystem) ;

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c I] M

o

Tailored tools: Game
=N Threading Infrastructure

\

1 @ Queue up a bunch of work items, wait for
CONTRT™ them to complete

- | GG
lllllllllll

BeginExecuteParallel(Q);

ExecuteParallel (g_pParticleSystem,
&CParticleSystem: :Update, time);

ExecuteParallel (&UpdateRopes, time);

EndExecuteParallel();

« Low level APIs for the brave

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [I M

e @ What if you can’t eliminate contention over
cONTRT™ shared resources?

= Example: Allocator
= Heavily used

= Multiple pools of fixed sized blocks with a
custom spin lock mutex per-pool

= Mutex limiting scale
= Didn’t want per-thread allocators

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F c [' M

= Lock-free algorithms

|
gom&f = No thread can block system regardless of
W 5% e scheduling or state

= Under the hood of all services and data
structures

= Relies on atomic write instructions,
“compare-and-swap”

e ‘.:"'I-'_
San 121

al

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. www E D ': I] N F [: I] M

W\ Contention

bool CompareAndSwap(int *pDest, int newvalue, int oldvalue)

fq :

Gﬂ ® o, 2007 1 Lock(pDest);
" sanans bool success = false;

if (*pDest == oldvalue)

{
*pDest = newvValue;
success = true;

}

unTock(pDest);

return success;

}

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

W\ Contention

bool CompareAndSwap(int *pDest, int newvalue, int oldvalue)

' —_dasm
cﬂ ch 58 2007 1P -

phar="" - prgnl:IE-E-':' {
Can
mov eax,oldvalue
mov ecx,pbDest

mov edx,newvalue

Tock cmpxchg [ecx],edx
mov eax,0
setz al

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www_ G I] B '] H F_ E [I M

: g @ Use lock-free algorithm in allocator
conhoL

+ Replace mutex and traditional free list per-
pool with a lock-free list per-pool

= Windows API/XDK SList

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

o

Lock-free example: singly
linked list

[® Compare and-swap

“If head is equal to what | think it is, assign
with my new head”

= ABA Problem: is it the same head?
= Use a serial number as a discriminating field

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

aDevelopeTs
O

Lock-free example: singly
linked list

h class CSList
{ {
CONIRY public:
Marcl . Francisc csList()
void Push(SListNode_t *pNode);
SListNode_t *Pop();
SListNode_t *Detach();
int Count() const;
private:
SListHead_t m_Head;

}s

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': 0 N F I: I] M

aDevelopeTs
O

[VALVE]

Lock-free example
linked list

struct SListNode_t

{
SListNode_t *pNext;
3
union SListHead_t
{
struct value_t
{
SListNode_t *pNext;
intl6 iDepth;
intl6é iSequence;
} value;
int64 valueb64;
};

© 2007 Valve Corporation. All Rights Reserved.

. singly

WWW.GDCONF.COM

o

Lock-free example: singly
linked list

h vVoid Push(SListNode_t *pNode)
i {
cﬂ, | SListHead_t oldHead, newHead;
wach 59200 for (;3)
{
oldHead.value64 = m_Head.valueb4;
newHead.value.iDepth = oldHead.value.iDepth + 1;
newHead.value.iSequence = oldHead.value.iSequence + 1;
newHead.value.Next = pNode;
pNode->pNext = oldHead.value.pNext;
if (ThreadInterlockedAssignif64(&m_Head.valueb4,
newHead.value64, oldHead.value64))
{
return;

}
}

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F c [' M

o

Lock-free example: singly
linked list

1 « Lock-free list exceptionally useful

CONTRL = Keep pools of context structures when
impractical to give every thread a context

= Efficiently gather results of a parallel process
for later handling

= Build up lists of data to operate on using
Push(), then use Detach() (a.k.a “Flush”) to
grab the data in another thread in a single
operation

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B U N F [: [I M

extern Vector trace_start;
extern vector trace_end;

// etc...

' | struct cbrush_t

int contents;

unsigned short numsides;

unsigned short firstbrushside;

int checkcount; // to avoid repeated testings

};
/1177777777777 77777/7777/7////777
void BeginTrace()

{
g_CModelMutex.Lock();

++s_nCheckCount;

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

vector m_start;
| vector m_end;

: // etc...
CONIRET

gch 5. CvisitBitvec m_Brushvisits;

e FraMElsER
Can
.
};

CTraceInfoPool g_TraceInfoPool;

TraceInfo_t *BeginTrace()

{
TraceInfo_t *pTracelInfo;
if (!g_TraceinfoPool.PopItem(&pTraceInfo))
pTraceInfo = new TraceInfo_t;
return pTraceInfo;
}

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E I] ': |] N F I: I] M

: g, @ Thread pool work distribution queue
Gﬂl’fm‘& = Derived from HL2 asynchronous /O queue
= Designed for one provider, one consumer
= Simple prioritized queue with mutex

= Arbitrary priority

= One queue for all threads

1 B
il CraREISER
il

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

N‘#ﬁi = Solutions
CONT! = Use lock-free queue (Fober, et. al.)

i e
rrrrrrrrrrrrr

= Rework interface to fixed priorities, one
gueue per-priority
@ Interfaces critical

= Queues per core in addition to a shared
queue

= Use atomic operations to get “ticket”, actual
work done may differ

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F c [' M

7 @ Locks permit a stable reality

CONIEY™ < Lock-free permits reality to change
" instruction to instruction

= Leverage inference rather than locks to
know part of the system is stable

=« Wait-free is always better

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [' M

W\ Looking Forward

7 = Why so much up-front investment?
cgmﬁg

- 5, 2007 |
C . Franeise
:|-|I'l

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

g1 © Why so much up-front investment?
CONTRYU = Steam

e ©» Communicate with customers

= Tap markets not available via retail
= Dramatic change is underway

= Core count double every 18 months

= CPU/GPU/PPU/AIPU/etc not the future

<= Many homogeneous cores

= Division of computing power a software problem

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

Build or acquire strong tools, new techniques

= Embrace lock-free mechanisms to move work and data to and
from wait-free code

= Prepare for decomposition of features over many cores

= Use accessible solutions to empower all programmers, not just
systems programmers

= Support even higher level threading framed in terms of game
problems

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW E D ': I] N F c 0 M

,» Started with a stable but bad threading

@ lteratively eliminated bad cases using
variety of techniques, usually lock-free

= During iterations, expanded toolset to
meet newly discovered needs

@ Focused on ease-of-use for other
programmers

= Now being applied by others at higher
levels

I V A L v E I © 2007 Valve Corporation. All Rights Reserved. WWW G D B I] N F [: [I M

: In Source SDK this summer
coJﬂ!ﬁ

= Contact: tom_gdc@valvesoftware.com

| v A L V E I © 2007 Valve Corporation. All Rights Reserved. www E D ': |] N F [: I] M

