
Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

Chapter 8

Shading in Valve’s Source Engine

Jason Mitchell9, Gary McTaggart10 and Chris Green11

8.1 Introduction

Starting with the release of Half-Life 2 in November 2004, Valve has been shipping
games based upon its Source game engine. Other Valve titles using this engine include
Counter-Strike: Source, Lost Coast, Day of Defeat: Source and the recent Half-Life 2:
Episode 1. At the time that Half-Life 2 shipped, the key innovation of the Source
engine’s rendering system was a novel world lighting system called Radiosity Normal
Mapping. This technique uses a novel basis to economically combine the soft realistic

9 jasonm@valvesoftware.com
10 gary@valvesoftware.com
11 cgreen@valvesoftware.com

8 - 1
© 2007 Valve Corporation. All Rights Reserved

mailto:jasonm@valvesoftware.com
mailto:gary@valvesoftware.com
mailto:cgreen@valvesoftware.com

Chapter 8: Shading in Valve’s Source Engine

lighting of radiosity with the reusable high frequency detail provided by normal mapping.
In order for our characters to integrate naturally with our radiosity normal mapped
scenes, we used an irradiance volume to provide directional ambient illumination in
addition to a small number of local lights for our characters. With Valve’s recent shift to
episodic content development, we have focused on incremental technology updates to
the Source engine. For example, in the fall of 2005, we shipped an additional free Half-
Life 2 game level called Lost Coast and the multiplayer game Day of Defeat: Source.
Both of these titles featured real-time High Dynamic Range (HDR) rendering and the
latter also showcased the addition of real-time color correction to the engine. In these
course notes, we will describe the unique aspects Valve’s shading techniques in detail.

8.2 Engineering / Marketplace Context

Before describing the details of the Source engine’s shading techniques, it is important
to note that the decision to include particular features must be made in the context of the
marketplace. In order to make informed technology tradeoffs, we periodically perform a
voluntary survey of approximately one million of our users’ PCs via our online distribution
system, Steam. This survey, which is publicly available at
http://www.steampowered.com/status/survey.html, can tell us, for example, how many of
our users have video cards capable of running ps_2_b pixel shaders (40%) or how many
of our users have 256MB or more video memory (38%). Having an accurate picture of
our users’ hardware helps us to weigh the engineering cost of adopting a given graphics
feature against the benefit to our end users. All of the decisions that drive development
in the Source engine are based upon these kinds of measured tradeoffs.

Figure 1. Typical Survey Measurements - sampled from 1 million gamers in Spring 2006

8 - 2
© 2007 Valve Corporation. All Rights Reserved

http://www.steampowered.com/status/survey.html

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

8.3 World Lighting

For Half-Life 2, we leveraged the power of light maps generated by our in-house
radiosity solver, vrad, while adding high frequency detail using per-pixel normal
information. On its own, radiosity has a lot of nice properties for interactive content in
that it is possible to pre-generate relatively low resolution light maps which result in
convincing global illumination effects at a low run-time cost. A global illumination
solution like this requires less micro-management of light sources during content
production and often avoids objectionable harsh lighting situations as shown in the
images below.

Harsh Direct Lighting Only Radiosity

Figure 2. Benefits of Radiosity Lighting

Because of the unpredictable interactive nature of our medium—we don’t know where
the camera will be, since the player is in control—we can’t tune lights shot-by-shot as in
film production. Global illumination tends to result in game environments that look
pleasing under a variety of viewing conditions. Because of this, heavily favoring the look
of global illumination is a common theme in Valve’s shading philosophy, as we will
discuss later in the section on model lighting via an irradiance volume.

8.3.1 Radiosity Normal Mapping

While radiosity has a lot of strengths, the resulting low-resolution light maps can’t
capture the high-frequency detail we would like to author into our surfaces. Even at
relatively modest luxel density—a luxel is typically 4” by 4” in our game worlds—light
maps require a significant amount of video memory in a typical game level since they
are unique to a particular polygon or location in the world. While many current games
accumulate one local light per rendering pass [Diefenbach97] or perform several local
lighting computations in a single pixel shader [Franke06], we seek to effectively perform
diffuse bump mapping with respect to an arbitrary number of lights in one pass.

8 - 3
© 2007 Valve Corporation. All Rights Reserved

Chapter 8: Shading in Valve’s Source Engine

With high frequency surface detail in the form of repeatable/reusable albedo and normal
maps that are higher resolution than our 4” by 4” per luxel light maps, we combined the
strengths of normal mapping and light mapping in a novel technique we call Radiosity
Normal Mapping. Radiosity Normal Mapping is the key to the Source engine’s world
lighting algorithm and overall look [McTaggart04].

The core idea of Radiosity Normal Mapping is the encoding of light maps in a novel
basis which allows us to express directionality of incoming radiance, not just the total
cosine weighted incident radiance, which is where most light mapping techniques stop.
Our offline radiosity solver has been modified to operate on light maps which encode
directionality using the basis shown in the figure below.







−

3
1,

2
1,

6
1







 −−

3
1,

2
1,

6
1









3
1,0,

3
2

Figure 3. Radiosity Normal Mapping Basis

That is, at the cost of tripling the memory footprint of our light maps, we have been able
to encode directionality in a way that is compatible with conventional Cartesian normal
maps stored in surface local coordinates. Because of this encoding, we are able to
compute exit radiance as a function of albedo, normal and our directional light maps so
that we can diffusely illuminate normal mapped world geometry with respect to an
arbitrarily complex lighting environment in a few pixel shader instructions. Additionally,
these same normal maps are used in other routines in our pixel shaders, such as those
which compute Fresnel terms or access cubic environment maps for specular
illumination.

8.3.2 World Specular Lighting

In keeping with our general philosophy of favoring complex global illumination and image
based lighting techniques over the accumulation of a few simple local lights, we have
chosen to use cubic environment maps for specular world lighting. In order to keep the
memory cost of storing a large number of cube maps at a reasonable level, our level
designers manually place point entities in their maps which are used as sample points
for specular lighting. High dynamic range cube maps are pre-rendered from these

8 - 4
© 2007 Valve Corporation. All Rights Reserved

http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

positions using the Source engine itself and are stored as part of the static level data. At
run time, world surfaces which are assigned a material requiring a specular term use
either the cube map from the nearest sample point or may have one manually assigned
in order to address boundary conditions.

8.4 Model Lighting

In order to light our characters and other models that can animate dynamically within our
game worlds, we have employed a system that combines spatially varying directional
irradiance samples from our radiosity solution with local light sources and environment
mapping. On graphics hardware that supports 2.0 pixel shaders and lower, we compute
diffuse illumination from up to two local light sources, either per pixel or per vertex. On
newer graphics chips with longer pixel shaders, we can afford to include specular
contributions with Fresnel terms as well as more custom effects.

8.4.1 Ambient Cube

At Valve, we heavily favor the look of global illumination in order to ground characters in
our game worlds and make them seem to be truly present in their environment. The
most significant component of Half-Life 2 character and model lighting is the inclusion of
a directional ambient term from directional irradiance samples precomputed throughout
our environments and stored in an irradiance volume as in [Greger98]. While most
games today still use a few local lights and a gray ambient term, there have been a few
examples of other games including a more sophisticated ambient term. For example,
characters in many light mapped games such as Quake III include an ambient term
looked up from the light map of the surface on which the character is standing [Hook99]
or a hemisphere lighting term which can be combined with the sky color [Hargreaves03].
Most similarly to the Source engine, the game Max Payne 2 stored linear 4-term
spherical harmonic coefficients, which effectively reduce to a pair of directional lights, in
an irradiance volume throughout their game worlds for use in
their character lighting model [Lehtinen06]. +y

Due to the particular representation of our irradiance
samples (essentially low resolution cubic irradiance
environment maps [Ramamoorthi01]) and due to the fact
that they are computed so that they represent only indirect or
bounced light, we call the samples Ambient Cubes. The
evaluation of the ambient cube lighting term, which can be
performed either per pixel or per vertex, is a simple weighted
blending of six colors as a function of a world space normal
direction as illustrated in the following HLSL routine.

-x

-z +z

+x

-y

Figure 4. Ambient cube basis

8 - 5
© 2007 Valve Corporation. All Rights Reserved

http://www.cs.utah.edu/~shirley/papers/irradiance.pdf
http://graphics.stanford.edu/papers/envmap/

Chapter 8: Shading in Valve’s Source Engine

float3 AmbientLight(const float3 worldNormal)
{

 float3 nSquared = worldNormal * worldNormal;
 int3 isNegative = (worldNormal < 0.0);
 float3 linearColor;
 linearColor = nSquared.x * cAmbientCube[isNegative.x] +
 nSquared.y * cAmbientCube[isNegative.y+2] +
 nSquared.z * cAmbientCube[isNegative.z+4];
 return linearColor;

}

Listing 1. Ambient Cube Routine (6 vertex shader instructions or 11 pixel shader
instructions)

The ambient cube is intuitive and easy to evaluate in either a pixel or vertex shader,
since the six required colors can be loaded into shader constants. As mentioned above,
we can afford to evaluate only two local diffuse lights on our target graphics hardware.
In addition to this, any significant lights beyond the most important two are assumed to
be non-local and are combined with the ambient cube on the fly for a given model.
These six RGB colors are a more concise choice of basis than the first two orders of
spherical harmonics (nine RGB colors) and this technique was developed in parallel with
much of the recent literature on spherical harmonics such as [Ramamoorthi01]. As
shown in Figure 5 below, we could potentially improve the fidelity of our indirect lighting
term by replacing this term with spherical harmonics. With the increased size of the
ps_3_0 constant register file (up to 224 from 32 on ps_2_x models) this may be a good
opportunity for improvement in our ambient term going forward.

Original Light Probe

Irradiance
environment maps

from
[Ramamoorthi01]

Irradiance
environment maps
represented using

Valve ambient cube
Figure 5. Comparison of spherical harmonics with Valve Ambient Cube

8 - 6
© 2007 Valve Corporation. All Rights Reserved

http://graphics.stanford.edu/papers/envmap/
http://graphics.stanford.edu/papers/envmap/

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

8.4.2 Irradiance Volume

The directional irradiance samples or ambient cube sample points are stored in a 3D
spatial data structure which spans our game environments. The samples are stored
non-hierarchically at a fairly coarse (4’ x 4’ x 8’) granularity since indirect illumination
varies slowly through space and we only need a fast lookup, not extreme accuracy.
When drawing any model that moves in our environment, such as the character Alyx in
the figure below, the nearest sample point to the model’s centroid is selected from the
irradiance volume without any spatial filtering. Of course, this can result in hard
transitions in the directional ambient component of illumination as the character or object
moves throughout the environment, but we choose to time-average the ambient and
local lighting information to limit the effect of lighting discontinuities, lessening the visual
popping in practice. On important hero characters such as Alyx, we also heuristically
boost the contribution of the directional ambient term as a function of the direct lights so
that we don’t end up with the direct illumination swamping the ambient and causing a
harsh appearance.

Without boosted ambient term With boosted ambient term

Figure 6. Alyx illuminated with two distant direct lights and directional ambient term

8.4.3 Local lighting

As mentioned above, the ambient cube data precomputed throughout our game worlds
incorporates only bounced or indirect lighting. For direct lighting from local lights, we
add in modified per-pixel Lambertian and Phong terms. On ps_2_0 video cards (20% of
our users) we compute diffuse illumination for up to two local lights. Any nearby local
lights beyond the two most significant lights are added into the ambient cube on the fly.
Starting with Half-Life 2: Episode 1, on video cards which support ps_2_b or ps_3_0
shader models (40% of our users), the Source engine also computes Phong terms for
the two most significant local lights.

8 - 7
© 2007 Valve Corporation. All Rights Reserved

Chapter 8: Shading in Valve’s Source Engine

8.4.4 Half Lambert Diffuse

In order to soften the diffuse contribution from local lights, we
scale the dot product from the Lambertian model by ½, add
½ and square the result so that this dot product, the red
cosine lobe in Figure 7 at right, which normally lies in the
range of -1 to +1, is instead in the range of 0 to 1 and has a
pleasing falloff (the blue curve in Figure 7). This technique,
which we refer to as Half Lambert prevents the back side of
an object with respect to a given light source from losing its
shape and looking too flat. This is a completely non-physical
technique but the perceptual benefit is enormous given the
trivial implementation cost. In the original game Half-Life,
where this diffuse Half Lambert term was the only term in
most of the model lighting, it kept the characters in particular
from being lit exclusively by a constant ambient term on the
back side with respect to a given light source.

Figure 7. Cosine lobe (red)
Half-Lambert function (blue)

+

+ =

First Lambertian

Term
Second Lambertian

Term
Constant Ambient

Lambertian plus

Constant Ambient

+

+ =

First Half

Lambert Term
 Second Half

Lambert Term
 Ambient Cube Half Lambert and

Ambient Cube

Figure 8. Comparison of traditional Lambertian and constant ambient terms with

Half Lambert and Ambient Cube terms for diffuse lighting

8 - 8
© 2007 Valve Corporation. All Rights Reserved

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

* =

Diffuse Lighting from

Figure 8 Above Albedo Diffuse Lighting

Figure 9. Diffuse character lit by two Half-Lambert terms and ambient cube

8.4.5 Local Specular

On pixel shader models ps_2_b and ps_3_0, our shading algorithms are no longer
limited by shader length, so an easy way to increase visual quality is the inclusion of
specular terms where appropriate. Starting with Half-Life 2: Episode 1, we have given
our artists the ability to include Phong terms which can be driven by specular mask and
exponent textures. As you can see in the images in Figure 11, this term integrates
naturally with our existing lighting and provides greater definition, particularly to our
heroine, Alyx Vance. In order to keep the specular terms from causing objects or
characters from looking too much like plastic, we typically keep the specular masks
(Figure 10c) fairly dim and also ensure that the specular exponents are low in order to
get broad highlights. We also include a Fresnel term (Figure 10b) in our local specular
computations in order to heavily favor rim lighting cases as opposed to specular
highlights from lights aligned with the view direction. Under very bright lights, the
specular rim highlights are often bright enough to bloom out in a dramatic fashion as a
result of the HDR post-processing techniques which we will discuss in the following
section.

* * =

(a) Two Phong Lights (b) Fresnel Term (c) Specular Mask (d) Final Specular
Figure 10. Specular lighting in Half-Life 2: Episode 1

8 - 9
© 2007 Valve Corporation. All Rights Reserved

Chapter 8: Shading in Valve’s Source Engine

+

=

(a) Diffuse from Figure 9 (b) Specular from Figure 10 (c) Final Lighting

Figure 11. Specular lighting term added for final character lighting equation. In

Half-Life 2: Episode 1, 60% of our current users will see the image in (a) while the 40%
with hardware supporting ps_2_b and higher shaders will see the additional specular
lighting in (c).

8.5 High Dynamic Range Rendering

After shipping Half-Life 2, we implemented High Dynamic Range (HDR) rendering in the
Source engine using a novel method which runs on graphics cards which support 2.0
pixel shaders and 16-bit per channel source textures [Green06]. This means that a
whopping 60% of our users get to experience our games in HDR today. This technology
was used to create the Lost Coast demo and has been used in all subsequent Valve
games including Day of Defeat: Source and the recent episodic release Half-Life 2:
Episode 1.

Many different methods for performing HDR rendering on modern GPUs were
implemented and evaluated before finding the set of tradeoffs most appropriate for
rendering our HDR content on current GPUs. Our implementation makes use of
primarily 8-bit per channel textures with 16-bit per channel (either floating point or fixed
point depending upon hardware support) light maps and cubic environment maps plus a
few 16-bit per channel hand-authored textures for the sky, clouds, and sun.

Figure 10. Scene from Lost Coast at Varying Exposure Levels

8 - 10
© 2007 Valve Corporation. All Rights Reserved

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

Since all of the shaders in the Source engine’s DirectX9 code path are single pass, it is
possible to perform HDR lighting and tone mapping operations during normal rendering.
This required the addition of a tone mapping subroutine to all pixel shaders but enabled
us to render to ordinary 8-bit per channel render targets. By using 8-bit per channel
render targets instead of floating point buffers, there is very little performance difference
with the low dynamic range path, memory usage is the same and, most importantly,
multisample anti-aliasing is supported. This also allows us to avoid an extra copy and
conversion of the rendering output to the final display format. When intermediate
renderings are used as the inputs for subsequent graphics operations, the dynamic
range of these intermediate results is carefully managed so as to still provide high quality
outputs from 8-bit data. For instance, renderings done for dynamic reflection in the
water have their exposure adjusted by the water’s reflectivity coefficient so that proper
highlights from the sun are still produced.

When actual full-range HDR rendering outputs are needed (such as when rendering the
cube maps used for reflection using the engine), the engine is used to produce a series
of renderings at varying exposure levels, which are subsequently combined to produce
one floating point HDR output image.

Auto exposure calculations needed for tone mapping are performed in a unique fashion
in the Source engine. A pixel shader is applied to the output image to determine which
output pixels fall within a specified luminance range and writes a flag into the stencil
buffer indicating whether each pixel passed the test. An asynchronous occlusion query
is then used to count how many pixels were within the specified range. When the
occlusion query's results become available, they are used to update a running luminance
histogram. One luminance range test is done per frame, amortizing the cost of
generating the histogram over multiple frames. Time averaging is done to smooth out
the results of this incremental histogram. This technique has a number of advantages
over other methods, including the fact that it computes a full histogram instead of just an
average luminance value, and that this histogram is available to the CPU without stalling
the graphics pipeline or performing texture reads from GPU memory. In addition to the
running histogram, other auto exposure and bloom filter parameters are controllable by
level designers and can be authored to vary spatially with our game worlds or in
response to game events. In addition to adjusting our tone mapping operations as a
function of the running luminance of our scenes, we perform an image-space bloom in
order to further stylize our scenes and increase the perception of brightness for really
bright direct or reflected light. In the offline world, such bloom filtering is typically
performed in HDR space prior to tone mapping [Debevec00] but we find that tone
mapping before blooming is not an objectionable property of our approach, particularly
considering the large number of users who get to experience HDR in our games due to
this tradeoff.

For those interested in implementation details, the source code for the auto exposure
calculation is provided in the Source SDK.

8 - 11
© 2007 Valve Corporation. All Rights Reserved

Chapter 8: Shading in Valve’s Source Engine

8.6 Color Correction

Another important rendering feature, which we first shipped in the game Day of Defeat:
Source, is real-time color correction. Human emotional response to color has been
exploited in visual art for millennia. In the film world, the process of color correction or
color grading has long been used to intentionally emphasize specific emotions. As it
turns out, this technique, which is fundamentally a process of remapping colors in an
image, can be very efficiently implemented on modern graphics hardware as a texture-
based lookup operation. That is, given an input image, we can take the r, g, b color at
each pixel and re-map it to some other color using an arbitrary function expressed as a
volume texture. During this process, each pixel is processed independently, with no
knowledge of neighboring pixels. Of course, image processing operations such as
blurring or sharpening, which do employ knowledge of neighboring pixels, can be
applied before or after color correction very naturally.

Original Shot Day-for-Night Color Corrected shot

Original Shot Desaturated with Color Correction

Figure 11. Real-Time Color Correction in the Source Engine

8 - 12
© 2007 Valve Corporation. All Rights Reserved

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

As mentioned in the preceding section on HDR rendering, we are already performing
some image processing operations on our rendered scene. Including a color correction
step fits very easily into the existing post-processing framework and decouples color
correction from the rest of the art pipeline. We have found color correction to be useful
for a variety of purposes such as stylization or to enhance a particular emotion in
response to gameplay. For example, after a player is killed in our World War II themed
game Day of Defeat: Source, the player can essentially look over the shoulder of any of
his living teammates for a short period before he is allowed to re-enter play. During this
time, we use color correction and a simple overlayed film grain layer to give the
rendering the desaturated look of WWII era archival footage.

Of course, color correction in real-time games can go beyond what is possible in film
because it is possible to use game state such as player health, proximity to a goal or any
other factor as an input to the color correction process. In general, the dynamic nature
of games is both a curse and a blessing, as it is more difficult to tweak the look of
specific scenes but there is far more potential to exploit games’ dynamic nature due to
the strong feedback loop with the player. We think of color correction as one of many
sideband channels that can be used to communicate information or emotion to a player
and we believe we are only just beginning to tap into the potential in this area.

Beyond its use as an emotional indicator, color correction is a powerful tool for art
direction. The amount of content required to produce a compelling game environment is
rising rapidly with GPU capabilities and customer expectations. At the same time, game
development team sizes are growing, making it impractical to make sweeping changes
to source artwork during the later stages of production. With the use of color correction,
an Art Director is able to apply his vision to the artwork late in the process, rather than
filtering ideas through the entire content team. This is not only an enormous effort-
multiplier, but it is invariably true that a game development team knows more about the
intended player emotional response late in the process. Having the power to make art
changes as late as possible is very valuable. If an art team authors to a fairly neutral
standard, an art director is able to apply game-specific, level-specific or even dynamic
event-specific looks using color correction. Another less obvious benefit which is
particularly important to a company like Valve which licenses it engine and actively
fosters a thriving mod community is the power that color correction provides for mod
authors or Source engine licensees to inexpensively distinguish the look of their titles
from other Source engine games.

For our games, a level designer or art director authors color correction effects directly
within the Source engine. A given color correction function can be built up from a series
of familiar layered operators such as curves, levels and color balance or can be imported
from other popular software such as Photoshop, After Effects, Shake etc. Once the
author is satisfied with their color correction operator, the effect can be baked into a
volume texture that describes the color correction operation and is saved to disk. This
color correction operator can then be attached to a node within our game world using
our level design tool, Hammer. It is possible to attach a color correction function to a
variety of nodes such as trigger nodes or distance based nodes, where the effect of the
color correction operator decreases with distance from a given point. Essentially any
game logic can drive color correction and several color correction operators can be
active at once, with smooth blending between them.

8 - 13
© 2007 Valve Corporation. All Rights Reserved

Chapter 8: Shading in Valve’s Source Engine

Acknowledgements

Many thanks to James Grieve, Brian Jacobson, Ken Birdwell, Bay Raitt and the rest of
the folks at Valve who contributed to this material and the engineering behind it. Thanks
also to Paul Debevec for the light probes used in Figure 5.

References

[Debevec00] Paul Debevec, Personal Communication, 2000.

[Diefenbach97] Paul J. Diefenbach, “Multi-pass Pipeline Rendering: Realism For
Dynamic Environments,” Proceedings, 1997 Symposium on Interactive 3D Graphics,
1997.

[Franke06] Scott Franke, Personal Communication, 2006.

[Green06] Chris Green and Gary McTaggart, “High Performance HDR Rendering on
DX9-Class Hardware,” Poster presented at the ACM Symposium on Interactive 3D
Graphics and Games, March, 2006.

[Greger98] Gene Greger, Peter Shirley, Philip M. Hubbard and Donald P. Greenberg,
“The Irradiance Volume,” IEEE Computer Graphics & Applications, 18(2):32-43, 1998.

[Hargreaves03] Shawn Hargreaves, “Hemisphere Lighting with Radiosity Maps”,
Gamasutra, August 2003.

[Hook99] Brian Hook, “The Quake 3 Arena Rendering Architecture,” Game Developer’s
Conference 1999.

[Lehtinen06] Jaakko Lehtinen, Personal Communication, 2006.

[McTaggart04] Gary McTaggart, “Half-Life 2 Shading,” GDC Direct3D Tutorial 2004.

[Ramamoorthi01] Ravi Ramamoorthi and Pat Hanrahan, “An Efficient Representation for
Irradiance Environment Maps,” SIGGRAPH 2001, pages 497-500.

8 - 14
© 2007 Valve Corporation. All Rights Reserved

http://www.debevec.org/Probes/
http://www.openworlds.com/employees/paul/i3d.ps.gz
http://www.cs.utah.edu/~shirley/papers/irradiance.pdf
http://www.gamasutra.com/features/20030813/hargreaves_01.shtml
http://www.gamasutra.com/features/index_video.htm
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://graphics.stanford.edu/papers/envmap/

	8.4 Model Lighting

